pandas中DataFrame相关
1.创建
1.1 标准格式创建
DataFrame创建方法有很多,常用基本格式是:DataFrame 构造器参数:DataFrame(data=[],index=[],coloumns=[])
In [272]: df2=DataFrame(np.arange(16).reshape((4,4)),index=['a','b','c','d'],columns=['one','two','three','four']) In [273]: df2
Out[273]:
one two three four
a 0 1 2 3
b 4 5 6 7
c 8 9 10 11
d 12 13 14 15
1.2 用传入等长列表组成的字典来创建
In [204]: data={'c':['',''],'a':['']} #创建不等长字典序列
In [205]: data
Out[205]: {'a': [''], 'c': ['', '']}
In [206]: df=DataFrame(data)
Traceback (most recent call last):
...
ValueError: arrays must all be same length # 报错,传入的数组必须等长
In [207]: data={'c':['',''],'a':['','']} #创建<strong>等长字典序列
In [208]: df=DataFrame(data)
In [209]: df
Out[209]:
a c # 创建完成后'a','c'自动按照字典序排序,并且创建时自定加上索引
0 5 1
1 6 2
创建完成后'a','c'自动按照字典序排序,并且创建时自定加上索引
In [210]: df=DataFrame(data,columns=['c','a']) In [211]: df
Out[211]:
c a #按照指定顺序创建。
0 1 5
1 2 6
1.3 传入嵌套字典(字典的值也是字典)创建DataFrame
如果指定了columns名称,则会按照指定顺序创建。
In [227]: nest_dict={'shanghai':{2015:100,2016:101},'beijing':{2015:102,2016:103}}
In [228]: nest_dict
Out[228]: {'beijing': {2015: 102, 2016: 103}, 'shanghai': {2015: 100, 2016: 101}}
In [229]: df1=DataFrame(nest_dict)
In [230]: df1
Out[230]:
beijing shanghai
2015 102 100
2016 103 101
2.增删改查
2.1 增
创建新列
df['b']=1
l = [1,2,3]
df['c']=l
添加新行
将列表中的数据添加到dataframe中
df = pd.DataFrame(columns=[u'设备号', u'节目', u'类型', u'完整度', u'调整系数', u'喜爱度'])
new = pd.DataFrame([info], columns=[u'设备号', u'节目', u'类型', u'完整度', u'调整系数', u'喜爱度'])
# 忽略索引,往dataframe中插入一行数据
df = df.append(new, ignore_index=True)
将数据字典添加到dataframe中
df = pd.DataFrame(columns=[u'设备号', u'节目', u'类型', u'完整度', u'调整系数', u'喜爱度'])
new = pd.DataFrame(dict, ,index=[""])
# 忽略索引,往dataframe中插入一行数据
df = df.append(new, ignore_index=True)
数据合并与重塑
https://blog.csdn.net/stevenkwong/article/details/52528616
2.2 删
用del删除
In [225]: del df['a'] In [226]: df
Out[226]:
c b
0 1 1
1 2 1
In [258]: df
Out[258]:
c b 0
0 5 1 6
1 5 1 6
In [259]: df.drop(0,axis=1) #删除列Out[259]:
c b
0 5 1
1 5 1
In [260]: df # df的数据并没有改动
Out[260]:
c b 0
0 5 1 6
1 5 1 6
dorp()可以通过axis(行:axis=0 ,列:axis=1)可以控制删除行或列,默认是行。
dorp()也可以同时删除多行或多列
In [271]: df.drop([0,1],axis=1)
Out[271]:
c b
0 6 6
1 5 1
2.3 改
In [242]: df['c'][1]=4 In [243]: df
Out[243]:
c b
0 1 1
1 4 1
修改列:
In [244]: df['c']=5 In [245]: df
Out[245]:
c b
0 5 1
1 5 1
修改行:
df[:1]=6 df
Out[266]:
c b
0 6 6
1 5 1
修改行和列如果传入一组值得话,注意传入数组的长度,如果传入数组长度大于len(df) 则截断,小于df长度则置NaN
In [267]: df[0]=Series([1,2,3]) In [268]: df
Out[268]:
c b 0
0 6 6 1
1 5 1 2 In [269]: df[1]=Series([1,]) #增加一列,传入一个值 In [270]: df
Out[270]:
c b 0 1
0 6 6 1 1
1 5 1 2 NaN
2.4 查
df[0:1] 选取第一行 按位置选取的 df[0] 这样是错误的的
df[‘a’] 选取第a列 按列名选取
df.loc[0] 按index选取行 df.loc[0:3]选取0,1,2行 df.loc[‘A’] 选取索引为A的行
df.loc[[‘A’],’a’] 行列一起选
df.iloc[0,2] 只能通过位置来选择,选择第一行第三列
df.iloc[0:3,1:3]通过位置切片来选择 可以选多的,也可以选中一个元素
df.at[1,’a’]通过名称来选择,只能选中一个
df.iat[1,2]通过位置来选择 只能选中一个
df.ix[1] 通过位置来选取行 df.ix[‘A’]通过索引选择行
df.ix[1,’a’] 同时选取行列,位置和索引都可以 可选中一个元素,也可以是多个
df选择后的数据基本都是dataframe结构,不能直接使用
使用df.values可以获取它的值
df.columns 输出列的信息
df.index 输出索引相关信息
df.describe() 会显示每一列的总数均值等
df.info() 显示基本的数据信息
df.count() df.mean() df.max() df.min() 统计每一列的统计量
df.head(10) 输出前10行 df.tail(10) 输出最后10行
df.isnull.sum() 按列统计表中的空值的数量
df.where(df>10).count() 按列统计 表中大于10的元素个数
df.groupby(‘y’).count() 根据y属性进行分组,统计每一组的分布情况
df['x'].value_counts() #统计某一列x中各个值出现的次数:
df[df[‘price’]<’7.2’] 把符合条件的行显示出来
df.where(df[‘price’]<’7.2’) 所有行都显示,不符合条件的price显示为nan
3.操作相关
3.1 去除重复值
# 重复数据只取第一个值
df = df.drop_duplicates(subset=[u'企业ID'], keep='first')
3.2 转换数据类型
3.2.1 一列转换成str
# 将int转换成str
l = list(df[u'企业ID'].apply(str)
3.2.2 列表转换成字符串
enterprise_str = ''.join(enterprise_list)
3.3 连接操作
3.3.1 多列相加
data = df['A']+df['B']
3.3.2 索引左连接
# 将三个df以企业id为索引拼接起来
df = df.join(df2)
df = df.join(df3)
3.3.3 左连接
被连接的表的列必须是索引列
df1.join(df2.set_index('key'), how='left', lsuffix='_df1', rsuffix='_df2', on='keys')
一个更便捷的实现方法,不需要设置索引
df = pd.merge(df1, df2, on='action_type', how='left')
3.3.4 拼接
# 合并
df = pd.concat([data1, data2], ignore_index=True)
3.4 索引相关
3.4.1 设置索引
df = df.set_index('ID')
3.4.2 取消索引
df = df.reset_index()
3.5 条件替换
# 将小于0的值替换为0
df.loc[df['A']<0, 'A'] = 0
3.6 改变列顺序
df = df[['B','A','C']]
3.7 按某列排序
# 默认是升序
df_sort = df.sort_values(by='score', ascending=False)
3.8 写入excel
# 存入excel乱码时使用utf_8_sig
writer = pd.ExcelWriter('result.xlsx')
df1.to_excel(writer, 'sheetA', index=True, encoding="utf_8_sig")
df2.to_excel(writer, 'sheetB', index=True, encoding="utf_8_sig")
pandas中DataFrame相关的更多相关文章
- Pandas中DataFrame修改列名
Pandas中DataFrame修改列名:使用 rename df = pd.read_csv('I:/Papers/consumer/codeandpaper/TmallData/result01- ...
- Spark与Pandas中DataFrame对比
Pandas Spark 工作方式 单机single machine tool,没有并行机制parallelism不支持Hadoop,处理大量数据有瓶颈 分布式并行计算框架,内建并行机制paral ...
- pandas中DataFrame的ix,loc,iloc索引方式的异同
pandas中DataFrame的ix,loc,iloc索引方式的异同 1.loc: 按照标签索引,范围包括start和end 2.iloc: 在位置上进行索引,不包括end 3.ix: 先在inde ...
- Spark与Pandas中DataFrame对比(详细)
Pandas Spark 工作方式 单机single machine tool,没有并行机制parallelism不支持Hadoop,处理大量数据有瓶颈 分布式并行计算框架,内建并行机制paral ...
- pandas中DataFrame对象to_csv()方法中的encoding参数
当使用pd.read_csv()方法读取csv格式文件的时候,常常会因为csv文件中带有中文字符而产生字符编码错误,造成读取文件错误,在这个时候,我们可以尝试将pd.read_csv()函数的enco ...
- pandas中DataFrame和Series的数据去重
在SQL语言中去重是一件相当简单的事情,面对一个表(也可以称之为DataFrame)我们对数据进行去重只需要GROUP BY 就好. select custId,applyNo from tmp.on ...
- pandas中DataFrame重置设置索引
在pandas中,经常对数据进行处理 而导致数据索引顺序混乱,从而影响数据读取.插入等. 小笔总结了以下几种重置索引的方法: import pandas as pd import numpy as n ...
- pandas中Dataframe的查询方法([], loc, iloc, at, iat, ix)
数据介绍 先随机生成一组数据: import pandas as pd import numpy as np state = ['Ohio', 'Ohio', 'Ohio', 'Nevada', 'N ...
- pandas中DataFrame使用
切片选择 #显示第一行数据print(df.head(1)) #显示倒数三行数据 print(df.tail(3)) loc df.loc[row_index,col_index] 注意loc是根 ...
随机推荐
- Android中将歌曲导入到SD卡和模拟器
打开桌面的eclipse.exe的主程序,直接来到他的主页面上来. 在工具上边找到window----show view ----Other的按钮 打开之后,我们点击Android展开他. 展开之后, ...
- Android 进阶7:进程通信之 AIDL 的使用
读完本文你将了解: AIDL 是什么 AIDL 支持的数据类型 AIDL 如何编写 AIDL 实例 创建 AIDL 编写服务端代码 编写客户端代码 运行结果 总结 代码地址 Thanks 记得 201 ...
- Linux下安装SVN(Subversion)
一.安装直接运行命令用YUM安装: yum install subversion -y 二.创建版本库创建版本库用svnadmin create命令,大概语法是svnadmin create svn库 ...
- 使用LNMP环境安装typecho博客的全程记录
虽然我是搞asp.net的 但是十分欣赏php,php有很多开源的博客程序 比如大名鼎鼎的Wordpress.还有各种独立博客大牛使用的z-blog,以及短小精悍的emblog. wordpress臃 ...
- Python之namedtuple源码分析
namedtuple()函数根据提供的参数创建一个新类,这个类会有一个类名,一些字段名和一个可选的用于定义类行为的关键字,具体实现如下 namedtuple函数源码 from keyword impo ...
- js 预解析
前言 JavaScript是解释型语言是毋庸置疑的,但它是不是仅在运行时自上往下一句一句地解析的呢? 事实上或某种现象证明并不是这样的,通过<JavaScript权威指南>及网上相关资料了 ...
- matlab中一些常用的函数
stem函数h = stem(x,y); %绘制火柴梗图 ,stem的工作原理是,根据一个x对应一个y,绘制火柴梗图.
- 对django整个网站搭建文件的总结
1.比方说现在是写一个使用HTTP 2.0的HTTP服务器,在不改变现有程序配置的情况下,需要重新编译HTTP服务器,比方说,用的是Nginx服务器,需要隐藏服务器版本,如果想要小绿锁 也就是网站安全 ...
- python 的os的总结
转:http://www.cnblogs.com/BeginMan/p/3327291.html
- 十五、python沉淀之路--eval()的用法
一.eval函数 python eval() 函数的功能:将字符串str当成有效的表达式来求值并返回计算结果. 语法:eval(source[, globals[, locals]]) -> v ...