0103 最短Hamilton路径【状压DP】
0103 最短Hamilton路径 0x00「基本算法」例题
描述
给定一张 n(n≤20) 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hamilton路径。 Hamilton路径的定义是从 0 到 n-1 不重不漏地经过每个点恰好一次。
输入格式
第一行一个整数n。
接下来n行每行n个整数,其中第i行第j个整数表示点i到j的距离(一个不超过10^7的正整数,记为a[i,j])。
对于任意的x,y,z,数据保证 a[x,x]=0,a[x,y]=a[y,x] 并且 a[x,y]+a[y,z]>=a[x,z]。
输出格式
一个整数,表示最短Hamilton路径的长度。
样例输入
4
0 2 1 3
2 0 2 1
1 2 0 1
3 1 1 0
样例输出
4
样例解释
从0到3的Hamilton路径有两条,0-1-2-3和0-2-1-3。前者的长度为2+2+1=5,后者的长度为1+2+1=4
#include <bits/stdc++.h>
using namespace std;
const int MAXN = 1e5+5;
const int INF = 0x3f3f3f3f;
#define ll long long
int f[1<<20][25];
int w[25][25];
int n;
int main()
{
cin>>n;
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
cin>>w[i][j];
memset(f,0x3f,sizeof(f));
f[1][0]=0;
for(int i=1;i<(1<<n);i++)
{
for(int j=0;j<n;j++)
{
if((i>>j)&1)
{
for(int k=0;k<n;k++)
{
if((i>>k)&1)
f[i][j]=min(f[i][j],f[i^(1<<j)][k]+w[k][j]);
}
}
}
}
cout<<f[(1<<n)-1][n-1]<<endl;
}
0103 最短Hamilton路径【状压DP】的更多相关文章
- 完全图的最短Hamilton路径——状压dp
题意:给出一张含有n(n<20)个点的完全图,求从0号节点到第n-1号节点的最短Hamilton路径.Hamilton路径是指不重不漏地经过每一个点的路径. 算法进阶上的一道状压例题,复杂度为O ...
- 最短Hamilton路径-状压dp解法
最短Hamilton路径 时间限制: 2 Sec 内存限制: 128 MB 题目描述 给定一张 n(n≤20) 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hamil ...
- Acwing-91-最短Hamilton路径(状压DP)
链接: https://www.acwing.com/problem/content/93/ 题意: 给定一张 n 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hami ...
- 『最短Hamilton路径 状态压缩DP』
状压DP入门 最短Hamilton路径 Description 给定一张 n(n≤20) 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hamilton路径. Hamil ...
- Contest Hunter 0103最短Hamilton路径 【状压dp】 By cellur925
题目传送门 Hamilton路径的定义:从0(起点)到n-1(终点)不重不漏地经过每个点恰好一次. 由于数据范围非常小,考虑状压.如NOIP2017宝藏一题,把状态压缩设为n个点是否已到达的二进制数. ...
- CH0103最短Hamilton路径 & poj2288 Islands and Brigdes【状压DP】
虐狗宝典学习笔记: 取出整数\(n\)在二进制表示下的第\(k\)位 \((n >> ...
- 最短Hamilton路径(状压dp)
最短Hamilton路径实际上就是状压dp,而且这是一道作为一个初学状压dp的我应该必做的题目 题目描述 给定一张 n(n≤20) 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 ...
- 最短Hamilton路径【状压DP】
给定一张 nn 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hamilton路径. Hamilton路径的定义是从 0 到 n-1 不重不漏地经过每个点恰好一次. 输入 ...
- AcWing 最短Hamilton距离 (状压DP)
题目描述 给定一张 n 个点的带权无向图,点从 0∼n−1 标号,求起点 0 到终点 n−1 的最短 Hamilton 路径. Hamilton 路径的定义是从 0 到 n−1 不重不漏地经过每个点恰 ...
随机推荐
- 如何优雅的使用iBatis
1 使用命名空间2 每张表一个sqlmaps文件3 创建resultMap与parameterMap4 常用的sql创建<sql>片段5 尽量遵循ORM原则设计domain对象
- background 背景图铺满界面
background <body background="/image/1.png" style=" background-repeat:no-repeat ; b ...
- 对C++ templates类模板的几点补充(Traits类模板特化)
前一篇文章<浅谈C++ templates 函数模板.类模板以及非类型模板参数>简单的介绍了什么是函数模板(这个最简单),类模板以及非类型模板参数.本文对类模板再做几点补充. 文章目录1. ...
- 门户系统整合sso cookie共享及显示用户信息
1.1 门户系统整合sso 在门户系统点击登录连接跳转到登录页面.登录成功后,跳转到门户系统的首页,在门户系统中需要从cookie中 把token取出来.所以必须在登录成功后把token写入cooki ...
- Why is the ibdata1 file continuously growing in MySQL?
We receive this question about the ibdata1 file in MySQL very often in Percona Support. The panic st ...
- 前端面试:js闭包,为什么要使用闭包
要理解闭包,首先理解javascript特殊的变量作用域,变量的作用于无非就是两种:全局变量,局部变量. javascript语言的特殊处就是函数内部可以读取全局变量. 1.如何从外部读取局部变量? ...
- (转)C/S 与 B/S 区别
感谢:http://www.cnblogs.com/xiaoshuai/archive/2010/05/25/1743741.html C/S结构,即Client/Server(客户机/服务器)结构, ...
- CVE-2016-6662 mysql RCE测试
参考:http://bobao.360.cn/learning/detail/3027.html ,我尝试第一种方法 1.先修改mysql_hookandroot_lib.c里面的反弹地址和端口: # ...
- KVM的ept机制
转载:http://ytliu.info/blog/2014/11/24/shi-shang-zui-xiang-xi-de-kvm-mmu-pagejie-gou-he-yong-fa-jie-xi ...
- Linux 内核链表的使用及深入分析【转】
转自:http://blog.csdn.net/BoArmy/article/details/8652776 1.内核链表和普通链表的区别 内核链表是一个双向链表,但是与普通的双向链表又有所区别.内核 ...