库鲁斯卡尔(Kruskal)算法是一种按照连通网中边的权值递增的顺序构造最小生成树的方法。Kruskal算法的基本思想是:假设连通网G=(V,E),令最小生成树的初始状态为只有n个顶点而无边的非连通图T=(V,{}),图中每个顶点自成一个连通分量。在E中选择权值最小的边,若该边依附的顶点落在T中不同的连通分量中,则将此边加入到T中;否则,舍去此边而选下一条权值最小的边;依次类推,直到T中所有顶点都在同一个连通分量上(此时含有n-1边)为止,这时的T就是一棵最小的生成树。
    注意,初始时T的连通分量为顶点个数n,在每一次选取最小权值的边加入到T时一定要保证T的连通分量减1;也即选取最小权值边所连接的两个顶点必须位于不同的连接分量上,否则应舍去此边而再选取下一条最小权值的边。
 
    概述
    实现Kruskal算法的关键是如何判断所选取的边是否与生成树中已保留的边形成回路,这可通过判断边的两个顶点所在的连通分量的方法来解决.为此设置一个辅助数组vest(数组元素下标为0~n-1),它用于判断两个顶点集合(即两个连通分量),此时按其中的一个集合编号重新统一编号(即合并成一个连通分量)。因此,当两个顶点的集合(连通分量)编号不同时,则加入这两个顶点所构成的边到最小生成树中就一定不会形成回路,因为这两个顶点分属于不同的连通分量。
    在实现Kruskal算法时,需要用一个数组E来存放图G中是所有边,并要求他们是按权值由小到大的顺序排列的;为此先从图G的邻接矩阵中获取所有边集E(注意,在连接矩阵中顶点i和顶点j存在着(i,j)和(j,i)两条边,故只取i<j时的一条边,然后用冒泡排序法对边集E按权值递增排序。
参考代码:

 #include<stdio.h>
#define MAXSIZE 30
#define MAXCOST 32767 typedef struct
{
int u;//边的起始顶点
int v;//边的起始终点
int w;//边的权值
}Edge; void Bubblesort(Edge R[],int e)//冒泡排序,对数组R中的e条边按权值递增排序
{
Edge temp;
int i,j,swap;
for(i=;i<e-;j++)//进行e-1趟排序
{
swap=;
for(j=;j<e-i-;j++)
if(R[j].w>R[j+].w)
{
temp=R[j];R[j]=R[j+];R[j+]=temp;//交换R[j]和R[j+1]
swap=;//置有交换标志
}
if(swap==) break;//本趟比较中未出现交换则结束排序
}
} void Kruskal(int gm[][],int n)//在顶点为n的连接图中构造最小的生成树,gm为连通网的邻接矩阵
{
int i,j,u1,v1,sn1,sn2,k;
int vest[MAXSIZE];//数组vest用于判断两顶点之间是否连通
Edge E[MAXSIZE];//MAXSIZE为可存放边数的最大常量值
k=;
for(i=;i<n;i++)
for(j=;j<n;j++)
if(i<j&&gm[i][j]!=MAXCOST)//MAXCOST为一个极大的常量值
{
E[k].u=i;
E[k].v=j;
E[k].w=gm[i][j];
k++;
}
Bubblesort(E,k);//采用冒泡排序对数组E中的k条边按权值递增排序
for(i=;i<n;i++)//初始化辅助数组
vest[i]=i;//给每个顶点置不同连通分量编号,即初始时有n个连通分量
k=;//k表示当前构造生成树的第n条边,初始值为1
j=;//j为数组E中元素的下标,初值为0
while(k<n)//产生最小生成树的n-1条边
{
u1=E[j].u;v1=E[j].v;//取一条边的头尾顶点
sn1=vest[u1];
sn2=vest[v1];//分别得到这两个顶点所属的集合编号
if(sn1!=sn2)//两顶点分属于不同集合则该边为最小生成树的一条边
{
printf("Edge:(%d,%d),Wight:%d\n",u1,v1,E[j].w);
k++;//生成的边数增1
for(i=;i<n;i++)//两个集合统一编号
if(vest[i]==sn2)//集合编号为sn2的第i号边其边号改为sn1
vest[i]=sn1;
}
j++;//扫描下一条边
}
}
void main()
{
int g[][]={{,,,,,},{,,,,,},{,,,,,},
{,,,,,},{,,,,,},{,,,,,}};
Kruskal(g,);//生成最小生成树
}

输出结果:

数组E示意图:

执行Kruskal算法中的冒泡排序函数BubbleSort后,存放连通网中所有边的数组E如下图所示。因数组E中前4条边的权值最小且又满足不在同一连通分量上的条件,故它们就是生成树的边(见图a,b,c,d)。接着考虑当前权值最小边(0,3)因该边所连接的两顶点在同一连通分量上,故舍弃此边,然后再选择下一权值最小的边。这时k值已等于n(即已找到n-1条边),故终止while循环的执行。因此,最终生成树如图所示:

最小生成树的Kruskal算法的更多相关文章

  1. 最小生成树的Kruskal算法实现

    最近在复习数据结构,所以想起了之前做的一个最小生成树算法.用Kruskal算法实现的,结合堆排序可以复习回顾数据结构.现在写出来与大家分享. 最小生成树算法思想:书上说的是在一给定的无向图G = (V ...

  2. 数据结构与算法--最小生成树之Kruskal算法

    数据结构与算法--最小生成树之Kruskal算法 上一节介绍了Prim算法,接着来看Kruskal算法. 我们知道Prim算法是从某个顶点开始,从现有树周围的所有邻边中选出权值最小的那条加入到MST中 ...

  3. 邻接矩阵c源码(构造邻接矩阵,深度优先遍历,广度优先遍历,最小生成树prim,kruskal算法)

    matrix.c #include <stdio.h> #include <stdlib.h> #include <stdbool.h> #include < ...

  4. HDU1875——畅通工程再续(最小生成树:Kruskal算法)

    畅通工程再续 Description相信大家都听说一个“百岛湖”的地方吧,百岛湖的居民生活在不同的小岛中,当他们想去其他的小岛时都要通过划小船来实现.现在政府决定大力发展百岛湖,发展首先要解决的问题当 ...

  5. 23最小生成树之Kruskal算法

    图的最优化问题:最小生成树.最短路径 典型的图应用问题 无向连通加权图的最小生成树 有向/无向加权图的最短路径 四个经典算法 Kruskal算法.Prim算法---------------最小生成树 ...

  6. 算法学习记录-图——最小生成树之Kruskal算法

    之前的Prim算法是基于顶点查找的算法,而Kruskal则是从边入手. 通俗的讲:就是希望通过 边的权值大小 来寻找最小生成树.(所有的边称为边集合,最小生成树形成的过程中的顶点集合称为W) 选取边集 ...

  7. 图论之最小生成树之Kruskal算法

    Kruskal算法,又称作为加边法,是配合并查集实现的. 图示: 如图,这是一个带权值无向图我们要求它的最小生成树. 首先,我们发现在1的所有边上,连到3的边的边权值最小,所以加上这条边. 然后在3上 ...

  8. 【最小生成树之Kruskal算法】

    看完之后推荐再看一看[最小生成树之Prim算法]-C++ 定义:一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的最少的边.最小生成树可以用kr ...

  9. 【转载】最小生成树之Kruskal算法

    给定一个无向图,如果它任意两个顶点都联通并且是一棵树,那么我们就称之为生成树(Spanning Tree).如果是带权值的无向图,那么权值之和最小的生成树,我们就称之为最小生成树(MST, Minim ...

随机推荐

  1. PhalApi 1.4.2 经典封存版 - 码云

    https://www.phalapi.net/ PhalApi 1.x 是经典封存版本,已停止更新,历练考验,可放心使用. 主要采用PEAR命名规范,遵循PSR-0,不支持命名空间和composer ...

  2. elementUI默认样式修改不成功的问题

    问题: login.vue中引入<style lang="postcss" src="./login.css" scoped></style& ...

  3. elementUI的导航栏怎么根据路由默认选中相关项

    1. <el-menu :default-active="this.$route.path.substr(1)" class="left-nav"> ...

  4. ASP.NET页面之间传值Application(5)

    Application对象的作用范围是整个全局,也就是说对所有用户都有效.它在整个应用程序生命周期中都是有效的,类似于使用全局变量一样,所 以可以在不同页面中对它进行存取.它和Session变量的区别 ...

  5. 【题解】HAOI2008木棍分割

    对于这道题目的两问,第一问直接二分答案求出最短长度.关键在于第二问应当如何求:建立dp方程,dp[i][j]代表到第i个分界线,切了j次(强制在第i处切一刀.这样就不会对后面的状态产生影响).状态转移 ...

  6. BZOJ1559 [JSOI2009]密码 【AC自动机 + 状压dp】

    题目链接 BZOJ1559 题解 考虑到这是一个包含子串的问题,而且子串非常少,我们考虑\(AC\)自动机上的状压\(dp\) 设\(f[i][j][s]\)表示长度为\(i\)的串,匹配到了\(AC ...

  7. bzoj2002: [Hnoi2010]Bounce 弹飞绵羊 分块

    这个题体现了分块不只是最大值最小值众数次数,而是一种清真的思想. 我们把整个序列分块,在每个块里处理每个位置跳出这个块的次数和跳出的位置,那么每次修改n0.5,每次查询也是,那么O(m* n0.5)的 ...

  8. innodb_stats_on_metadata and slow queries on INFORMATION_SCHEMA

    INFORMATION_SCHEMA is usually the place to go when you want to get facts about a system (how many ta ...

  9. 前端面试js题

    var a=10; (function(){ console.log(a); var a=100; })(); 结果:输出undefined 解释: function中有var a=100; 声明会提 ...

  10. 一个IT中专生在深圳的9年辛酸经历

    一个IT中专生在深圳的9年辛酸经历 想一想来到深圳已经近10年了,感概万千呐!从一个身无分文的中专职校计算机毕业出来后,竟然大胆的南下(之前可是连我们那地区之外都没去过),现在有供完的房子,温柔的妻子 ...