单表扫描,MySQL索引选择不正确 并 详细解析OPTIMIZER_TRACE格式
一 表结构如下:
MySQL 5.5.30 5.6.20 版本, 表大概有815万行
CREATE TABLE t_audit_operate_log (
Fid bigint(16) AUTO_INCREMENT,
Fcreate_time int(10) unsigned NOT NULL DEFAULT '0',
Fuser varchar(50) DEFAULT '',
Fip bigint(16) DEFAULT NULL,
Foperate_object_id bigint(20) DEFAULT '0',
PRIMARY KEY (Fid),
KEY indx_ctime (Fcreate_time),
KEY indx_user (Fuser),
KEY indx_objid (Foperate_object_id),
KEY indx_ip (Fip)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
执行查询:
mysql> explain select count(*) from t_audit_operate_log where Fuser='XX@XX.com' and Fcreate_time>=1407081600 and Fcreate_time<=1407427199\G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: t_audit_operate_log
type: ref
possible_keys: indx_ctime,indx_user
key: indx_user
key_len: 153
ref: const
rows: 2007326
Extra: Using where
发现,使用了一个不合适的索引, 不是很理想,于是改成指定索引:
mysql> explain select count(*) from t_audit_operate_log use index(indx_ctime) where Fuser='CY6016@cyou-inc.com' and Fcreate_time>=1407081600 and Fcreate_time<=1407427199\G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: t_audit_operate_log
type: range
possible_keys: indx_ctime
key: indx_ctime
key_len: 5
ref: NULL
rows: 670092
Extra: Using where
实际执行耗时,后者比前者快了接近10
问题: 很奇怪,优化器为何不选择使用 indx_ctime 索引,而选择了明显会扫描更多行的 indx_user 索引。
分析2个索引的数据量如下: 两个条件的唯一性对比:
select count(*) from t_audit_operate_log where Fuser='XX@XX.com';
+----------+
| count(*) |
+----------+
| 1238382 |
+----------+
select count(*) from t_audit_operate_log where Fcreate_time>=1407254400 and Fcreate_time<=1407427199;
+----------+
| count(*) |
+----------+
| 198920 |
+----------+
显然,使用索引indx_ctime好于indx_user,但MySQL却选择了indx_user. 为什么?
于是,使用 OPTIMIZER_TRACE进一步探索.
二 OPTIMIZER_TRACE的过程说明
以本处事例简要说明OPTIMIZER_TRACE的过程.
{\
"steps": [\
{\
"join_preparation": {\ ---优化准备工作
"select#": 1,\
"steps": [\
{\
"expanded_query": "/* select#1 */ select count(0) AS `count(*)` from `t_audit_operate_log` where ((`t_audit_operate_log`.`Fuser` = 'XX@XX.com') and (`t_audit_operate_log`.`Fcreate_time` >= 1407081600) and (`t_audit_operate_log`.`Fcreate_time` <= 1407427199))"\
}\
] /* steps */\
} /* join_preparation */\
},\
{\
"join_optimization": {\ ---优化工作的主要阶段,包括逻辑优化和物理优化两个阶段
"select#": 1,\
"steps": [\ ---优化工作的主要阶段, 逻辑优化阶段
{\
"condition_processing": {\ ---逻辑优化,条件化简
"condition": "WHERE",\
"original_condition": "((`t_audit_operate_log`.`Fuser` = 'XX@XX.com') and (`t_audit_operate_log`.`Fcreate_time` >= 1407081600) and (`t_audit_operate_log`.`Fcreate_time` <= 1407427199))",\
"steps": [\
{\
"transformation": "equality_propagation",\ ---逻辑优化,条件化简,等式处理
"resulting_condition": "((`t_audit_operate_log`.`Fuser` = 'XX@XX.com') and (`t_audit_operate_log`.`Fcreate_time` >= 1407081600) and (`t_audit_operate_log`.`Fcreate_time` <= 1407427199))"\
},\
{\
"transformation": "constant_propagation",\ ---逻辑优化,条件化简,常量处理
"resulting_condition": "((`t_audit_operate_log`.`Fuser` = 'XX@XX.com') and (`t_audit_operate_log`.`Fcreate_time` >= 1407081600) and (`t_audit_operate_log`.`Fcreate_time` <= 1407427199))"\
},\
{\
"transformation": "trivial_condition_removal",\ ---逻辑优化,条件化简,条件去除
"resulting_condition": "((`t_audit_operate_log`.`Fuser` = 'XX@XX.com') and (`t_audit_operate_log`.`Fcreate_time` >= 1407081600) and (`t_audit_operate_log`.`Fcreate_time` <= 1407427199))"\
}\
] /* steps */\
} /* condition_processing */\
},\ ---逻辑优化,条件化简,结束
{\
"table_dependencies": [\ ---逻辑优化, 找出表之间的相互依赖关系. 非直接可用的优化方式.
{\
"table": "`t_audit_operate_log`",\
"row_may_be_null": false,\
"map_bit": 0,\
"depends_on_map_bits": [\
] /* depends_on_map_bits */\
}\
] /* table_dependencies */\
},\
{\
"ref_optimizer_key_uses": [\ ---逻辑优化, 找出备选的索引
{\
"table": "`t_audit_operate_log`",\
"field": "Fuser",\
"equals": "'XX@XX.com'",\
"null_rejecting": false\
}\
] /* ref_optimizer_key_uses */\
},\
{\
"rows_estimation": [\ ---逻辑优化, 估算每个表的元组个数. 单表上进行全表扫描和索引扫描的代价估算. 每个索引都估算索引扫描代价
{\
"table": "`t_audit_operate_log`",\
"range_analysis": {\
"table_scan": {\---逻辑优化, 估算每个表的元组个数. 单表上进行全表扫描的代价
"rows": 8150516,\
"cost": 1.73e6\
} /* table_scan */,\
"potential_range_indices": [\ ---逻辑优化, 列出备选的索引. 后续版本字符串变为potential_range_indexes
{\
"index": "PRIMARY",\---逻辑优化, 本行表明主键索引不可用
"usable": false,\
"cause": "not_applicable"\
},\
{\
"index": "indx_ctime",\---逻辑优化, 索引indx_ctime
"usable": true,\
"key_parts": [\
"Fcreate_time",\
"Fid"\
] /* key_parts */\
},\
{\
"index": "indx_user",\---逻辑优化, 索引indx_user
"usable": true,\
"key_parts": [\
"Fuser",\
"Fid"\
] /* key_parts */\
},\
{\
"index": "indx_objid",\---逻辑优化, 索引
"usable": false,\
"cause": "not_applicable"\
},\
{\
"index": "indx_ip",\---逻辑优化, 索引
"usable": false,\
"cause": "not_applicable"\
}\
] /* potential_range_indices */,\
"setup_range_conditions": [\ ---逻辑优化,如果有可下推的条件,则带条件考虑范围查询
]/* setup_range_conditions */,\
"group_index_range":{\---逻辑优化,如带有GROUPBY或DISTINCT,则考虑是否有索引可优化这种操作.并考虑带有MIN/MAX的情况
"chosen":false,\
"cause":"not_group_by_or_distinct"\
}/* group_index_range */,\
"analyzing_range_alternatives":{\---逻辑优化,开始计算每个索引做范围扫描的花费(等值比较是范围扫描的特例)
"range_scan_alternatives":[\
{\
"index":"indx_ctime",\ ---[A]
"ranges":[\
"1407081600 <= Fcreate_time <= 1407427199"\
]/* ranges */,\
"index_dives_for_eq_ranges":true,\
"rowid_ordered":false,\
"using_mrr":true,\
"index_only":false,\
"rows":688362,\
"cost":564553,\ ---逻辑优化,这个索引的代价最小
"chosen":true\ ---逻辑优化,这个索引的代价最小,被选中.(比前面的table_scan 和其他索引的代价都小)
},\
{\
"index":"indx_user",\
"ranges":[\
"XX@XX.com <= Fuser <= XX@XX.com"\
]/* ranges */,\
"index_dives_for_eq_ranges":true,\
"rowid_ordered":true,\
"using_mrr":true,\
"index_only":false,\
"rows":1945894,\
"cost":1.18e6,\
"chosen":false,\
"cause":"cost"\
}\
]/* range_scan_alternatives */,\
"analyzing_roworder_intersect":{\
"usable":false,\
"cause":"too_few_roworder_scans"\
}/* analyzing_roworder_intersect */\
}/* analyzing_range_alternatives */,\---逻辑优化,开始计算每个索引做范围扫描的花费.这项工作结算
"chosen_range_access_summary":{\---逻辑优化,开始计算每个索引做范围扫描的花费.总结本阶段最优的.
"range_access_plan":{\
"type":"range_scan",\
"index":"indx_ctime",\
"rows":688362,\
"ranges":[\
"1407081600 <= Fcreate_time <= 1407427199"\
]/* ranges */\
}/* range_access_plan */,\
"rows_for_plan":688362,\
"cost_for_plan":564553,\
"chosen":true\ --这里看到的cost和rows都比 indx_user 要来的小很多---这个和[A]处是一样的,是信息汇总.
}/* chosen_range_access_summary */\
}/* range_analysis */\
}\
]/* rows_estimation */\ ---逻辑优化,估算每个表的元组个数.行估算结束
},\
{\
"considered_execution_plans":[\ ---物理优化,开始多表连接的物理优化计算
{\
"plan_prefix":[\
]/* plan_prefix */,\
"table":"`t_audit_operate_log`",\
"best_access_path":{\
"considered_access_paths":[\
{\
"access_type":"ref",\ ---物理优化,计算indx_user索引上使用ref方查找的花费,
"index":"indx_user",\
"rows":1.95e6,\
"cost":683515,\
"chosen":true\
},\ ---物理优化,本应该比较所有的可用索引,即打印出多个格式相同的但索引名不同的内容,这里却没有。推测是bug--没有遍历每一个索引.
{\
"access_type":"range",\---物理优化,猜测对应的是indx_time(没有实例可进行调试,对比5.7的跟踪信息猜测而得)
"rows":516272,\
"cost":702225,\---物理优化,代价大于了ref方式的683515,所以没有被选择
"chosen":false\ -- cost比上面看到的增加了很多,但rows没什么变化---物理优化,此索引没有被选择
}\
]/* considered_access_paths */\
}/* best_access_path */,\
"cost_for_plan":683515,\ ---物理优化,汇总在best_access_path 阶段得到的结果
"rows_for_plan":1.95e6,\
"chosen":true\ -- cost比上面看到的竟然小了很多?虽然rows没啥变化 ---物理优化,汇总在best_access_path 阶段得到的结果
}\
]/* considered_execution_plans */\
},\
{\
"attaching_conditions_to_tables":{\---逻辑优化,尽量把条件绑定到对应的表上
}/* attaching_conditions_to_tables */\
},\
{\
"refine_plan":[\
{\
"table":"`t_audit_operate_log`",\---逻辑优化,下推索引条件"pushed_index_condition";其他条件附加到表上做为过滤条件"table_condition_attached"
}\
]/* refine_plan */\
}\
]/* steps */\
}/* join_optimization */\ \---逻辑优化和物理优化结束
},\
{\
"join_explain":{}/* join_explain */\
}\
]/* steps */\
三 其他一个相似问题
单表扫描,使用ref和range从索引获取数据一例
http://blog.163.com/li_hx/blog/static/183991413201461853637715/
四 问题的解决方式
遇到单表上有多个索引的时候,在MySQL5.6.20版本之前的版本,需要人工强制使用索引,以达到最好的效果.
单表扫描,MySQL索引选择不正确 并 详细解析OPTIMIZER_TRACE格式的更多相关文章
- 单表扫描,MySQL索引选择不正确 并 详细解析OPTIMIZER_TRACE格式
单表扫描,MySQL索引选择不正确 并 详细解析OPTIMIZER_TRACE格式 一 表结构如下: 万行 CREATE TABLE t_audit_operate_log ( Fid b ...
- MySQL索引选择不正确并详细解析OPTIMIZER_TRACE格式
一 表结构如下: CREATE TABLE t_audit_operate_log ( Fid bigint(16) AUTO_INCREMENT, Fcreate_time int(10) un ...
- MySQL中的全表扫描和索引树扫描
引言 在学习mysql时,我们经常会使用explain来查看sql查询的索引等优化手段的使用情况.在使用explain时,我们可以观察到,explain的输出有一个很关键的列,它就是type属性,ty ...
- 图解MySQL索引(三)—如何正确使用索引?
MySQL使用了B+Tree作为底层数据结构,能够实现快速高效的数据查询功能.工作中可怕的是没有建立索引,比这更可怕的是建好了索引又没有使用到.本文将围绕着如何优雅的使用索引,图文并茂地和大家一起探讨 ...
- 如何优雅的使用 参数 is null而不导致全表扫描(破坏索引)
相信大家在很多实际业务中(特别是后台系统)会使用到各种筛选条件来筛选结果集 首先添加测试数据 ), Age INT) go CREATE INDEX idx_age ON TempList (Age) ...
- 表数据量影响MySQL索引选择
现象 新建了一张员工表,插入了少量数据,索引中所有的字段均在where条件出现时,正确走到了idx_nap索引,但是where出现部分自左开始的索引时,却进行全表扫描,与MySQL官方所说的最左匹配原 ...
- MySQL索引选择及规则整理
索引选择性就是结果个数与总个数的比值. 用sql语句表示为: SELECT COUNT(*) FROM table_name WHERE column_name/SELECT COUNT(*) FRO ...
- 七、mysql索引选择
.myisam,bdb,innodb,memory 单表至少支持16个索引 .create index id_index on emp (id) 为emp表创建一个名为id_index的id字段的索引 ...
- MySQL索引选择及添加原则
索引选择性就是结果个数与总个数的比值. 用sql语句表示为: SELECT COUNT(*) FROM table_name WHERE column_name/SELECT COUNT(*) FRO ...
随机推荐
- Spring实战第六章学习笔记————渲染Web视图
Spring实战第六章学习笔记----渲染Web视图 理解视图解析 在之前所编写的控制器方法都没有直接产生浏览器所需的HTML.这些方法只是将一些数据传入到模型中然后再将模型传递给一个用来渲染的视图. ...
- 为Zabbix配置Nova服务、Keystone和Placement进程CPU和内存usage监控
目前已经完成了RabbitMQ和MySQL的监控项配置,还差对nova-api.nova-conductor.nova-scheduler和keystone进程CPU和内存 usage的监控,类似的轮 ...
- 寻找完全数(C++)
[问题描述] 输入一个大于 1 的正整数 n,请你将大于 1 和小于或等于 n 的所有完全数输出.所谓完全数就是因子(不算其本身)之和等于它本身的数.例如 1+2+4+7+14=28,所以 28 是完 ...
- deeplearning.ai课程学习(1)
本系列主要是我对吴恩达的deeplearning.ai课程的理解和记录,完整的课程笔记已经有很多了,因此只记录我认为重要的东西和自己的一些理解. 第一门课 神经网络和深度学习(Neural Netwo ...
- HDU 4565 So Easy!(数学+矩阵快速幂)(2013 ACM-ICPC长沙赛区全国邀请赛)
Problem Description A sequence Sn is defined as:Where a, b, n, m are positive integers.┌x┐is the cei ...
- 软工实践Beta冲刺(3/7)
队名:起床一起肝活队 组长博客:博客链接 作业博客:班级博客本次作业的链接 组员情况 组员1(队长):白晨曦 过去两天完成了哪些任务 描述: 1.界面的修改与完善 展示GitHub当日代码/文档签入记 ...
- c++单例模式代码分析
单例模式就是一个C++语法精华浓缩的一个体现,有句老话:麻雀虽小五脏俱全!来形容单例非常贴切! 下面的代码分析了如果自己malloc并且memcpy一个单例指针会带来很大危害并如何防止这种情况发生. ...
- linux基本操作1
ctrl + alt + T 打开命令行 -根目录下home中为用户建的文件夹 cd 加目录名称转到当前目录 .当前目录..上级目录 ls 当前目录下的文件ls -l 显示当前目录下文件的权限 mkd ...
- Jboss提示:Server already running on localhost
最近在做项目中,经常遇到JBoss报如下提示:Server already running on localhost.这时Jboss显示已启动,但页面显示不出来.提示中给出了两种解决办法,运行新的服务 ...
- 通过SharpZipLib来压缩解压文件
在项目开发中,一些比较常用的功能就是压缩解压文件了,其实类似的方法有许多 ,现将通过第三方类库SharpZipLib来压缩解压文件的方法介绍如下,主要目的是方便以后自己阅读,当然可以帮到有需要的朋友更 ...