P4381 [IOI2008]Island
显然题目给的图构成一个基环树森林
对于每个基环树单独考虑,显然每个都走直径是最优的
考虑如何求出基环树的直径
把直径分为两种情况考虑,首先可以找出环
因为直径可能不在环边上,所以对每个环上节点的子树进行一遍 $dfs$,求出每个节点子树的直径
维护 $dis[x]$ 表示节点 $x$ 到叶子节点的最长路程,那么直径就是每个节点儿子的 $dis$ 中最大和次大的和
可以一遍循环动态维护最大和次大
直径也可能在环上
设环上两点 $x,y$ 的距离为 $d(x,y)$,那么就是求最大的 $dis[x]+dis[y]+d(x,y)$
这样复杂度是 $O(n^2)$,考虑优化
按照套路,考虑把环断成链:

维护一条链上的距离前缀和 $sum[\ ]$,设 $y$ 在 $x$ 后面,那么就是求直径就是 $dis[x]+dis[y]+sum[y]-sum[x]$
换一下,就是求对于每一个 $y$,求链上区间 $x\in(y-n,y)$ 的 $(dis[x]-sum[x])$ 最大值 $+(dis[y]+sum[y])$($n为环的节点数$)
显然这个东西我们可以单调队列优化
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
typedef long long ll;
inline int read()
{
int x=,f=; char ch=getchar();
while(ch<''||ch>'') { if(ch=='-') f=-; ch=getchar(); }
while(ch>=''&&ch<='') { x=(x<<)+(x<<)+(ch^); ch=getchar(); }
return x*f;
}
const int N=1e6+;
int fir[N],from[N<<],to[N<<],val[N<<],cntt;
inline void add(int a,int b,int c)
{
from[++cntt]=fir[a]; fir[a]=cntt;
to[cntt]=b; val[cntt]=c;
}
struct edge{
int v,w;//节点,边权
}To[N];//To存题目给出的数据
int n,tot,ring[N],d[N];//ring存环上节点,d存环上节点到下一环上节点的边的边权
ll ANS;
int fa[N];//存环节点的'父'节点
bool vis[N],p[N];//vis判断是否为走过的基环树节点,p判断是否是基环树环节点
void BFS(int x)//找环
{
tot=; vis[x]=; int t;
while()
{
t=To[x].v;
if(vis[t])//找到就一路回跳并更新ring,d,p
{
ring[++tot]=t; d[tot]=To[t].w; p[t]=;
for(int i=x;i!=t;i=fa[i])
p[i]=,ring[++tot]=i,d[tot]=To[i].w;
return;
}
vis[t]=; fa[t]=x; x=t;//否则就继续找
}
}
ll dis[N],res;//维护当前基环树直径
void dfs(int x,int f)//处理dis和子树直径最大值
{
vis[x]=;
for(int i=fir[x];i;i=from[i])
{
int &v=to[i]; if(p[v]||v==f) continue;
dfs(v,x); res=max(res,dis[x]+dis[v]+val[i]);
//此时dis[x]还没有dis[v]+val[i],所以res可以这样更新
dis[x]=max(dis[x],dis[v]+val[i]);//更新dis
}
}
int Q[N<<]; ll sum[N<<];
inline int id(int x) { return (x-)%tot+; }//把链节点换成环节点
inline ll calc(int x) { return dis[ring[id(x)]]-sum[x]; }
inline void solve()//单调队列
{
int l=,r=;
for(int i=;i<=(tot<<);i++)
{
sum[i]=sum[i-]+d[id(i)];
while(l<=r && i-Q[l]>=tot ) l++;
if(l<=r) res=max(res,calc(Q[l])+sum[i]+dis[ring[id(i)]]);//先更新res
while(l<=r && calc(i)>=calc(Q[r]) ) r--;//再更新队列
Q[++r]=i;
}
}
int main()
{
n=read(); int a,b;
for(int i=;i<=n;i++)
{
a=read(),b=read();
add(i,a,b); add(a,i,b);
To[i].v=a; To[i].w=b;
}
for(int i=;i<=n;i++)
{
if(vis[i]) continue;
BFS(i); res=;
for(int j=;j<=tot;j++) dfs(ring[j],);
solve(); ANS+=res;
}
printf("%lld",ANS);
return ;
}
P4381 [IOI2008]Island的更多相关文章
- P4381 [IOI2008]Island(基环树+单调队列优化dp)
P4381 [IOI2008]Island 题意:求图中所有基环树的直径和 我们对每棵基环树分别计算答案. 首先我们先bfs找环(dfs易爆栈) 蓝后我们处理直径 直径不在环上,就在环上某点的子树上 ...
- 【题解】Luogu P4381 [IOI2008]Island
原题传送门 题意:求基环树森林的直径(所有基环树直径之和) 首先,我们要对环上所有点的子树求出它们的直径和最大深度.然后,我们只用考虑在环上至少经过一条边的路径.那么,这种路径在环上一定有起始点和终点 ...
- 【Luogu】P4381 [IOI2008]Island
一.题目 Description 你将要游览一个有N个岛屿的公园.从每一个岛i出发,只建造一座桥.桥的长度以Li表示.公园内总共有N座桥.尽管每座桥由一个岛连到另一个岛,但每座桥均可以双向行走.同时, ...
- bzoj1791: [Ioi2008]Island 岛屿 单调队列优化dp
1791: [Ioi2008]Island 岛屿 Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 1826 Solved: 405[Submit][S ...
- IOI2008 island
题目链接:[IOI2008]Island 题目大意:求基环树直径(由于题目的意思其实是类似于每个点只有一个出度,所以在每个联通块中点数和边数应该是相同的,这就是一棵基环树,所以题目给出的图就是一个基环 ...
- bzoj千题计划114:bzoj1791: [Ioi2008]Island 岛屿
http://www.lydsy.com/JudgeOnline/problem.php?id=1791 就是求所有基环树的直径之和 加手工栈 #include<cstdio> #incl ...
- BZOJ1791: [Ioi2008]Island 岛屿
BZOJ1791: [Ioi2008]Island 岛屿 Description 你将要游览一个有N个岛屿的公园. 从每一个岛i出发,只建造一座桥. 桥的长度以Li表示. 公园内总共有N座桥. 尽管每 ...
- [题解] LuoguP4381 [IOI2008]Island
LuoguP4381 [IOI2008]Island Description 一句话题意:给一个基环树森林,求每棵基环树的直径长度的和(基环树的直径定义与树类似,即基环树上一条最长的简单路径),节点总 ...
- [bzoj1791][ioi2008]Island 岛屿(基环树、树的直径)
[bzoj1791][ioi2008]Island 岛屿(基环树.树的直径) bzoj luogu 题意可能会很绕 一句话:基环树的直径. 求直径: 对于环上每一个点记录其向它的子树最长路径为$dp_ ...
随机推荐
- memcache 加载(对象)所遇到的问题。资源
<?php $mem =new memcache(); if($mem->connect('127.0.0.1','11211')){ echo '连接OK'.'<br>'; ...
- 717. 1-bit and 2-bit Characters最后一位数是否为0
[抄题]: We have two special characters. The first character can be represented by one bit 0. The secon ...
- jquery dropdownlist.js
$.fn.extend({ SetDict: function (option) { var txtControl = $(this); if (!txtControl.hasClass(" ...
- c# 二分查找法(2分钟算法)
using System;using System.Collections.Generic;using System.Linq;using System.Text;using System.Threa ...
- hdu 4279 Number(G++提交)
打表找规律: #include<stdio.h> #include<math.h> #define N 250 bool judge(int i,int j) { ;k< ...
- css总结10:父标签没有定义高度,盒子异常移动
1 问题:在父标签没有定义高度的情况下,嵌套的盒子浮动后,父标签下面的元素发生位置错误. 2 解决方法: 2.1(大厂网页常用方法) 添加额外元素: 即:父标签下添加一个元素(.clearfix),去 ...
- css3的那些高级选择器一
css大家都不陌生了,从1996年12月css1正式推出,经历了1998年5月css2,再到2004年2月css2.1,最后一直到2010年推出的css3.css的推出给web带来巨大 的改变,使我们 ...
- delphi取括号内或括号外的内容
function TSetParkForm.RemoveSgin(str: string): string; // 去掉括号内的内容(包括括号) var i1, i2, i: integer; beg ...
- 使用"*"通配符来选择文件
Include 方法和IncludeDirectory 方法中的搜索模式中指定的虚拟路径可以接受一个"*"通配符字符作为前缀或后缀,以在最后一个路径段.搜索字符串是大小写不敏感的. ...
- 停止Nginx服务
查询nginx进程信息 chen@ubuntu:~$ ps -ef |grep nginx root : ? :: nginx: master process /usr/sbin/nginx -g d ...