The Erdös-Straus Conjecture 题解
题面
Description
The Brocard Erdös-Straus conjecture is that for any integern > 2 , there are positive integersa ≤ b ≤ c,so that :
\]
There may be multiple solutions. For example:
\]
Input
The first line of input contains a single decimal integer P, (1 ≤ p ≤ 1000), which is the number of data sets that follow. Each data set should be processed identically and independently.
Each data set consists of a single line of input. It contains the data set number,K, followed by a single space, followed by the decimal integer n,(2 ≤ n ≤ 50000)
Output
For each data set there is one line of output. The single output line consists of the data set number, K, followed by a single space followed by the decimal integer values a, b and c in that order, separated by single spaces
Sample Input
5
1 13
2 529
3 49849
4 49850
5 18
Sample Output
1 4 18 468
2 133 23460 71764140
3 12463 207089366 11696183113896622
4 12463 310640276 96497380762715900
5 5 46 2070
题解
对于这个式子
\]
不如先解除\(a\)的范围,首先\(a\)必然大于\(\frac{n}4\),因为\(b和c\)项不能为0,其次\(a\)要小于等于\(\frac{3*n}{4}\),因为要满足字典序最小,\(a\)必然最小。然后我们在这个范围枚举\(a\),计算可行的\(b和c\),不如将\(b和c\)看成一个整体,这样可以解出\(\frac{1}{b}+\frac{1}{c}\)
\]
如果解出后化简得到的分数正好分子为1,那么我们就可以直接得到\(b和c\),我们假设解出的分数为\(\frac{x}{y},x=1\),那么b和c就可以拆分为
\]
如果化简后不为1,则从小到大枚举b,找到最小的c,枚举下界从解出的分数的倒数+1开始,保证\(\frac{1}{b} < \frac{x}{y}\)到倒数的两倍结束,因为如果超过两倍的倒数b就大于c了,这时应轮换b和c使字典序最小,找出答案记录立刻退出循环即可
代码写的比较丑
AC代码
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {
return a % b == 0 ? b : gcd(b, a % b);
}
int main() {
int t;
scanf("%d", &t);
while (t--) {
int k; ll n;
scanf("%d%lld", &k, &n);
ll l = n / 4 + 1;
ll r = n * 3 / 4;
ll a, b, c;
bool flag = false;
for (ll i = l; i <= r; i++) {
if (flag) break;
ll x = n * i;
ll y = 4 * i - n;
ll num = gcd(x, y);
x /= num;
y /= num;
if (y == 1) {
a = i;
b = x + 1;
c = (x + 1) * x;
flag = true;
break;
}
else {
ll s = x / y + 1;
ll t = 2 * x / y;
for (ll j = s; j <= t; j++) {
ll tmp = y * j - x;
if ((x * j) % tmp == 0) {
a = i;
b = j;
c = x * j / tmp;
flag = true;
break;
}
}
}
}
printf("%d %lld %lld %lld\n", k, a, b, c);
}
return 0;
}
最近可能都没太有空更题解了,没做的题有点多,作业还好多wwww
The Erdös-Straus Conjecture 题解的更多相关文章
- Goldbach`s Conjecture(素筛水题)题解
Goldbach`s Conjecture Goldbach's conjecture is one of the oldest unsolved problems in number theory ...
- poj 2262 Goldbach's Conjecture(素数筛选法)
http://poj.org/problem?id=2262 Goldbach's Conjecture Time Limit: 1000MS Memory Limit: 65536K Total ...
- 【LightOJ1259】Goldbach`s Conjecture(数论)
[LightOJ1259]Goldbach`s Conjecture(数论) 题面 Vjudge T组询问,每组询问是一个偶数n 验证哥德巴赫猜想 回答n=a+b 且a,b(a<=b)是质数的方 ...
- IEEEXtreme 极限编程大赛题解
这是 meelo 原创的 IEEEXtreme极限编程大赛题解 IEEEXtreme全球极限编程挑战赛,是由IEEE主办,IEEE学生分会组织承办.IEEE会员参与指导和监督的.IEEE学生会员以团队 ...
- IEEEXtreme 10.0 - Goldbach's Second Conjecture
这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Goldbach's Second Conjecture 题目来源 第10届IEEE极限编程大赛 https ...
- Poj 2662,2909 Goldbach's Conjecture (素数判定)
一.Description In 1742, Christian Goldbach, a German amateur mathematician, sent a letter to Leonhard ...
- LightOJ1259 Goldbach`s Conjecture —— 素数表
题目链接:https://vjudge.net/problem/LightOJ-1259 1259 - Goldbach`s Conjecture PDF (English) Statistic ...
- Light oj-1259 - Goldbach`s Conjecture
1259 - Goldbach`s Co ...
- [POJ2262] Goldbach’s Conjecture
Goldbach's Conjecture Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 48161 Accepted: ...
随机推荐
- 【luogu P2863 [USACO06JAN]牛的舞会The Cow Prom】 题解
题目链接:https://www.luogu.org/problemnew/show/P2863 求强连通分量大小>自己单个点的 #include <stack> #include ...
- Validform 基于表单验证
<%@ page language="java" contentType="text/html; charset=UTF-8" pageEncoding= ...
- 在body中的AngularJS模块
<!DOCTYPE html><html><head><meta http-equiv="Content-Type" content=&q ...
- AngularJS 控制器属性
<!DOCTYPE html><html><head><meta http-equiv="Content-Type" content=&q ...
- ListItem Updating事件监视有没有上传附件
using System; using System.Collections.Generic; using System.Text; using Microsoft.SharePoint; using ...
- react setState修改嵌套对象
在react使用setState过程中,难免会遇到复杂的数据类型,,这里还要提醒一下setState 是异步操作行为,需要setState之后的结果做为参数,请求数据的话,可以配合 async aw ...
- 手把手教你玩转 CSS3 3D 技术
css3的3d起步 要玩转css3的3d,就必须了解几个词汇,便是透视(perspective).旋转(rotate)和移动(translate).透视即是以现实的视角来看屏幕上的2D事物,从而展现3 ...
- 7.Vue-Quill-Editor图片插入自定义
Vue-Quill-Editor图片插入自定义 前言: 因为在项目中前端采用了Vue来实现,正好用到了富文本编辑器这一块,于是,经过技术上的选择,决定使用Vue-Quill-Editor. 使用的过程 ...
- 简析--UUID
内容转载自:http://www.cnblogs.com/java-class/p/4727698.html 阅读目录 1.UUID简介 2.UUID组成 3.UUID实战演练 1.UUID 简介 U ...
- 简易Dubbo的搭建过程
dubbo是一个高性能的,基于java的,开源RPC框架,主要功能是让构建分布式计算更加容易. (分布式:多台计算机实现不同功能,形成一个整体对外服务) (集群式:多台计算机实现相同功能,分担计算压力 ...