Pandas的对齐运算

是数据清洗的重要过程,可以按索引对齐进行运算,如果没对齐的位置则补NaN,最后也可以填充NaN

Series的对齐运算

1. Series 按行、索引对齐

示例代码:

s1 = pd.Series(range(10, 20), index = range(10))
s2 = pd.Series(range(20, 25), index = range(5)) print('s1: ' )
print(s1) print('') print('s2: ')
print(s2)

运行结果:

s1:
0 10
1 11
2 12
3 13
4 14
5 15
6 16
7 17
8 18
9 19
dtype: int64 s2:
0 20
1 21
2 22
3 23
4 24
dtype: int64

2. Series的对齐运算

示例代码:

# Series 对齐运算
s1 + s2

运行结果:

0    30.0
1 32.0
2 34.0
3 36.0
4 38.0
5 NaN
6 NaN
7 NaN
8 NaN
9 NaN
dtype: float64

DataFrame的对齐运算

1. DataFrame按行、列索引对齐

示例代码:

df1 = pd.DataFrame(np.ones((2,2)), columns = ['a', 'b'])
df2 = pd.DataFrame(np.ones((3,3)), columns = ['a', 'b', 'c']) print('df1: ')
print(df1) print('')
print('df2: ')
print(df2)

运行结果:

df1:
a b
0 1.0 1.0
1 1.0 1.0 df2:
a b c
0 1.0 1.0 1.0
1 1.0 1.0 1.0
2 1.0 1.0 1.0

2. DataFrame的对齐运算

示例代码:

# DataFrame对齐操作
df1 + df2

运行结果:

     a    b   c
0 2.0 2.0 NaN
1 2.0 2.0 NaN
2 NaN NaN NaN

填充未对齐的数据进行运算

1. fill_value

使用addsubdivmul的同时,

通过fill_value指定填充值,未对齐的数据将和填充值做运算

示例代码:

print(s1)
print(s2)
s1.add(s2, fill_value = -1) print(df1)
print(df2)
df1.sub(df2, fill_value = 2.)

运行结果:

# print(s1)
0 10
1 11
2 12
3 13
4 14
5 15
6 16
7 17
8 18
9 19
dtype: int64 # print(s2)
0 20
1 21
2 22
3 23
4 24
dtype: int64 # s1.add(s2, fill_value = -1)
0 30.0
1 32.0
2 34.0
3 36.0
4 38.0
5 14.0
6 15.0
7 16.0
8 17.0
9 18.0
dtype: float64 # print(df1)
a b
0 1.0 1.0
1 1.0 1.0 # print(df2)
a b c
0 1.0 1.0 1.0
1 1.0 1.0 1.0
2 1.0 1.0 1.0 # df1.sub(df2, fill_value = 2.)
a b c
0 0.0 0.0 1.0
1 0.0 0.0 1.0
2 1.0 1.0 1.0

pandas数据对齐的更多相关文章

  1. pandas读书笔记 算数运算和数据对齐

    pandas最重要的一个功能是,它可以对不同索引的对象进行算数运算.在对象相加时,如果存在不同的索引对,则结果的索引就是该索引对的并集. Series s1=Series([,3.4,1.5],ind ...

  2. pandas数据操作

    pandas数据操作 字符串方法 Series对象在其str属性中配备了一组字符串处理方法,可以很容易的应用到数组中的每个元素 t = pd.Series(['a_b_c_d','c_d_e',np. ...

  3. C++中数据对齐

    大体看了看数据对齐,不知道是否正确,总结如下: struct A { char name; double dHeight; int age; }; sizeof(A) = (1+7+8+4+4) =  ...

  4. C/C++数据对齐汇总

     C/C++数据对齐汇总  这里用两句话总结数据对齐的原则: (1)对于n字节的元素(n=2,4,8,...),它的首地址能被n整除,才干获得最好的性能: (2)如果len为结构体中长度最长的变量,s ...

  5. gpu显存(全局内存)在使用时数据对齐的问题

    全局存储器,即普通的显存,整个网格中的随意线程都能读写全局存储器的任何位置. 存取延时为400-600 clock cycles  很easy成为性能瓶颈. 訪问显存时,读取和存储必须对齐,宽度为4B ...

  6. 数据分析与展示——Pandas数据特征分析

    Pandas数据特征分析 数据的排序 将一组数据通过摘要(有损地提取数据特征的过程)的方式,可以获得基本统计(含排序).分布/累计统计.数据特征(相关性.周期性等).数据挖掘(形成知识). .sort ...

  7. pandas小记:pandas数据输入输出

    http://blog.csdn.net/pipisorry/article/details/52208727 数据输入输出 数据pickling pandas数据pickling比保存和读取csv文 ...

  8. 结构体的数据对齐 #pragma浅谈

    之前若是有人拿个结构体或者联合体问我这个结构占用了多少字节的内存,我一定觉得这个人有点low, 直到某某公司的一个实习招聘模拟题的出现,让我不得不重新审视这个问题, 该问题大致如下: typedef ...

  9. Pandas数据排序

    Pandas数据排序 .sort_index() 在指定轴上根据索引进行排序,索引排序后内容会跟随排序 b = pd.DataFrame(np.arange(20).reshape(4,5),inde ...

随机推荐

  1. 016对象——__set __get get_class_methods get_class_vars

    <?php /** */ //http://phpbasic.com/004object/16.php?type=admin /*session_start(); $_SESSION['utyp ...

  2. ./startup.sh: /bin/sh^M: bad interpreter: 没有那个文件或目录 解决办法

    这是因为Linux上 的catalina.sh文件格式给修改了,看不出来,这样就必须通过vim编辑下,变为正常的格式,在catalina.sh的命令模式下输入  ( :set ff=unix ),接着 ...

  3. DRF 的 版本,解析器,与序列化

    DRF 的 版本,解析器,与序列化 补充 配置文件中的 类的调用: (字符串) v1 = ["view.xx.apth.Role","view.xx.apth.Role& ...

  4. 基于Python和Tornado的WEB Terminal

    https://github.com/liftoff/GateOne 亮点有以下: ↪ Clientless ↪ Multi-User and Multi-Session ↪ Multi-Auth a ...

  5. [Hive]HiveServer2概述

    1. HiveServer1 HiveServer是一种可选服务,允许远程客户端可以使用各种编程语言向Hive提交请求并检索结果.HiveServer是建立在Apache ThriftTM(http: ...

  6. [置顶] Android 适配真要命?

    原始尺寸场景 相信大家对上面也有所有耳闻另外就是如何计算屏幕的密度一般都是按照勾股定理例如中等屏幕密度 480^2+800^2开根号 然后除以当前屏幕尺寸3.5-4.2之间尺寸. 对于刚出来的那些An ...

  7. LeNet-5网络结构及训练参数计算

    经典神经网络诞生记: 1.LeNet,1998年 2.AlexNet,2012年 3.ZF-net,2013年 4.GoogleNet,2014年 5.VGG,2014年 6.ResNet,201 ...

  8. I.MX6 fbset 使用

    /****************************************************************************** * I.MX6 fbset 使用 * 说 ...

  9. 关键的OOP概念

    OOP的好处  1.封装, 2继承, 3多态. 多态性是指相同的操作或函数.过程可作用于多种类型的对象上并获得不同的结果.不同的对象,收到同一消息将可以产生不同的结果,这种现象称为多态性. <? ...

  10. RESTful Get方式传参json格式后端400 解决方案

    前端采用vue+axios 后端采用spring boot restful 问题: 前端get 请求需要传递array 字段值 后端由于tomcat 版本问题,不支持url接受特殊字符包括 [] {} ...