1136 A Delayed Palindrome (20 分)
Consider a positive integer N written in standard notation with k+1 digits ai as ak⋯a1a0 with 0 for all i and ak>0. Then N is palindromic if and only if ai=ak−i for all i. Zero is written 0 and is also palindromic by definition.
Non-palindromic numbers can be paired with palindromic ones via a series of operations. First, the non-palindromic number is reversed and the result is added to the original number. If the result is not a palindromic number, this is repeated until it gives a palindromic number. Such number is called a delayed palindrome. (Quoted from https://en.wikipedia.org/wiki/Palindromic_number )
Given any positive integer, you are supposed to find its paired palindromic number.
Input Specification:
Each input file contains one test case which gives a positive integer no more than 1000 digits.
Output Specification:
For each test case, print line by line the process of finding the palindromic number. The format of each line is the following:
A + B = C
where A is the original number, B is the reversed A, and C is their sum. A starts being the input number, and this process ends until C becomes a palindromic number -- in this case we print in the last line C is a palindromic number.; or if a palindromic number cannot be found in 10 iterations, print Not found in 10 iterations. instead.
Sample Input 1:
97152
Sample Output 1:
97152 + 25179 = 122331
122331 + 133221 = 255552
255552 is a palindromic number.
Sample Input 2:
196
Sample Output 2:
196 + 691 = 887
887 + 788 = 1675
1675 + 5761 = 7436
7436 + 6347 = 13783
13783 + 38731 = 52514
52514 + 41525 = 94039
94039 + 93049 = 187088
187088 + 880781 = 1067869
1067869 + 9687601 = 10755470
10755470 + 07455701 = 18211171
Not found in 10 iterations.
#include<iostream>
#include<algorithm>
using namespace std; bool isPalindromic(string &str){
int len = str.size();
for(int i = ; i < len/; i++){
if(str[i] != str[len - i - ])
return false;
}
return true;
} string add(const string &A,const string &B){
string C;
int len = A.size();
int carry = ;
for(int i = len - ; i >= ; i--){
int temp = A[i] - '' + B[i] - '' + carry;
C += temp % +'';
carry = temp / ;
}
if(carry != ) C += carry + '';
reverse(C.begin(),C.end());
return C;
} int main(){
string A,B,C;
cin >> A;
int cnt = ;
if(isPalindromic(A)){
cout << A << " is a palindromic number.";
return ;
}
while(cnt--){
B = A;
reverse(A.begin(),A.end());
C = add(A,B);
cout << B << " + " << A << " = " << C << endl;
if(isPalindromic(C)){
cout << C << " is a palindromic number.";
return ;
}
A = C;
}
cout <<"Not found in 10 iterations.";
return ;
}
1136 A Delayed Palindrome (20 分)的更多相关文章
- PAT甲级:1136 A Delayed Palindrome (20分)
PAT甲级:1136 A Delayed Palindrome (20分) 题干 Look-and-say sequence is a sequence of integers as the foll ...
- PAT 1136 A Delayed Palindrome
1136 A Delayed Palindrome (20 分) Consider a positive integer N written in standard notation with k ...
- pat 1136 A Delayed Palindrome(20 分)
1136 A Delayed Palindrome(20 分) Consider a positive integer N written in standard notation with k+1 ...
- PAT 1136 A Delayed Palindrome[简单]
1136 A Delayed Palindrome (20 分) Consider a positive integer N written in standard notation with k+1 ...
- 1136 A Delayed Palindrome (20 分)
Consider a positive integer N written in standard notation with k+1 digits ai as ak⋯a1a0 ...
- 1136 A Delayed Palindrome
题意:略. 思路:大整数相加,回文数判断.对首次输入的数也要判断其是否是回文数,故这里用do...while,而不用while. 代码: #include <iostream> #incl ...
- PAT1136:A Delayed Palindrome
1136. A Delayed Palindrome (20) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue ...
- PAT_A1136#A Delayed Palindrome
Source: PAT_A1136 A Delayed Palindrome (20 分) Description: Consider a positive integer N written in ...
- PAT A1136 A Delayed Palindrome (20 分)——回文,大整数
Consider a positive integer N written in standard notation with k+1 digits ai as ak⋯a1a0 ...
随机推荐
- Java学习第六篇:集合类
一.Java集合类框架 Java集合大致可分为Set.List和Map三种体系,其中Set代表无序.不可重复的集合:List代表有序.重复的集合:而Map则代表具有映射关系的集合:从Java5以后,J ...
- xml解析中的DOM和SAX的区别
面试题:DMO和SAX的区别? DOM解析的优点:增删查改操作方便,缺点:占用内存较大,不适合解析大的XML文件: SAX解析的优点:占用内存小,解析快:缺点:不适合增删查改:
- (转)Asp.Net生命周期系列一
原文地址:http://www.cnblogs.com/skm-blog/archive/2013/07/07/3176713.html Asp.Net生命周期对于初级甚至中级程序员来说,一直都是一个 ...
- 解决iReport打不开的一种方法
解决iReport打不开的一种方法 iReport版本:iReport-5.6.0-windows-installer.exe 系统:Win7 64位 JDK:1.7 在公司电脑安装没问题,能打开,但 ...
- 关于bootstrap模态框的初始化事件
转:https://blog.csdn.net/u010181136/article/details/77579823
- EFCore扩展Update方法(实现 Update User SET Id=Id+1)
EFCore扩展Update方法(实现 Update User SET Id = Id + 1) 源码地址(github) 前言 EFCore在操作更新的时候往往需要先查询一遍数据,再去更新相应的字段 ...
- Mysql高性能优化规范建议
数据库命令规范 所有数据库对象名称必须使用小写字母并用下划线分割 所有数据库对象名称禁止使用mysql保留关键字(如果表名中包含关键字查询时,需要将其用单引号括起来) 数据库对象的命名要能做到见名识意 ...
- 一大波趣图:CSS的力量
CSS的力量 CSS的作用,一目了然~ 见识一下CSS的厉害! 用了CSS,效果显著 HTML5 + CSS3 + Javascript会怎么样? HTML ...
- centos7多节点部署redis4.0.11集群
1.服务器集群服务器 redis节点node-i(192.168.0.168) 7001,7002node-ii(192.168.0.169) 7003,7004node-iii(192.168.0. ...
- Python元类__prepare__方法深入理解
学习元类的时候,对__prepare__不是很理解,书上讲解的也不是很详细,最后通过查看stackoverflow的一些帖子对该方法有了一些理解,记录如下: 先看代码: class member_ta ...