Consider a positive integer N written in standard notation with k+1 digits a​i​​ as a​k​​⋯a​1​​a​0​​ with 0 for all i and a​k​​>0. Then N is palindromic if and only if a​i​​=a​k−i​​ for all i. Zero is written 0 and is also palindromic by definition.

Non-palindromic numbers can be paired with palindromic ones via a series of operations. First, the non-palindromic number is reversed and the result is added to the original number. If the result is not a palindromic number, this is repeated until it gives a palindromic number. Such number is called a delayed palindrome. (Quoted from https://en.wikipedia.org/wiki/Palindromic_number )

Given any positive integer, you are supposed to find its paired palindromic number.

Input Specification:

Each input file contains one test case which gives a positive integer no more than 1000 digits.

Output Specification:

For each test case, print line by line the process of finding the palindromic number. The format of each line is the following:

A + B = C

where A is the original number, B is the reversed A, and C is their sum. A starts being the input number, and this process ends until C becomes a palindromic number -- in this case we print in the last line C is a palindromic number.; or if a palindromic number cannot be found in 10 iterations, print Not found in 10 iterations. instead.

Sample Input 1:

97152

Sample Output 1:

97152 + 25179 = 122331
122331 + 133221 = 255552
255552 is a palindromic number.

Sample Input 2:

196

Sample Output 2:

196 + 691 = 887
887 + 788 = 1675
1675 + 5761 = 7436
7436 + 6347 = 13783
13783 + 38731 = 52514
52514 + 41525 = 94039
94039 + 93049 = 187088
187088 + 880781 = 1067869
1067869 + 9687601 = 10755470
10755470 + 07455701 = 18211171
Not found in 10 iterations.
#include<iostream>
#include<algorithm>
using namespace std; bool isPalindromic(string &str){
int len = str.size();
for(int i = ; i < len/; i++){
if(str[i] != str[len - i - ])
return false;
}
return true;
} string add(const string &A,const string &B){
string C;
int len = A.size();
int carry = ;
for(int i = len - ; i >= ; i--){
int temp = A[i] - '' + B[i] - '' + carry;
C += temp % +'';
carry = temp / ;
}
if(carry != ) C += carry + '';
reverse(C.begin(),C.end());
return C;
} int main(){
string A,B,C;
cin >> A;
int cnt = ;
if(isPalindromic(A)){
cout << A << " is a palindromic number.";
return ;
}
while(cnt--){
B = A;
reverse(A.begin(),A.end());
C = add(A,B);
cout << B << " + " << A << " = " << C << endl;
if(isPalindromic(C)){
cout << C << " is a palindromic number.";
return ;
}
A = C;
}
cout <<"Not found in 10 iterations.";
return ;
}

1136 A Delayed Palindrome (20 分)的更多相关文章

  1. PAT甲级:1136 A Delayed Palindrome (20分)

    PAT甲级:1136 A Delayed Palindrome (20分) 题干 Look-and-say sequence is a sequence of integers as the foll ...

  2. PAT 1136 A Delayed Palindrome

    1136 A Delayed Palindrome (20 分)   Consider a positive integer N written in standard notation with k ...

  3. pat 1136 A Delayed Palindrome(20 分)

    1136 A Delayed Palindrome(20 分) Consider a positive integer N written in standard notation with k+1 ...

  4. PAT 1136 A Delayed Palindrome[简单]

    1136 A Delayed Palindrome (20 分) Consider a positive integer N written in standard notation with k+1 ...

  5. 1136 A Delayed Palindrome (20 分)

    Consider a positive integer N written in standard notation with k+1 digits a​i​​ as a​k​​⋯a​1​​a​0​​ ...

  6. 1136 A Delayed Palindrome

    题意:略. 思路:大整数相加,回文数判断.对首次输入的数也要判断其是否是回文数,故这里用do...while,而不用while. 代码: #include <iostream> #incl ...

  7. PAT1136:A Delayed Palindrome

    1136. A Delayed Palindrome (20) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue ...

  8. PAT_A1136#A Delayed Palindrome

    Source: PAT_A1136 A Delayed Palindrome (20 分) Description: Consider a positive integer N written in ...

  9. PAT A1136 A Delayed Palindrome (20 分)——回文,大整数

    Consider a positive integer N written in standard notation with k+1 digits a​i​​ as a​k​​⋯a​1​​a​0​​ ...

随机推荐

  1. linux内核被加载的过程

    二,linux内核被加载的过程 一,linux安装时遇到的概念解析 内核必须模块vmlinz(5M左右)不认识硬盘,原本是需要写跟loader中一样的内容,来加载非必要模块. 内核非必要的功能被编译为 ...

  2. boost库中sleep方法详解

    博客转载自:https://blog.csdn.net/huang_xw/article/details/8453506 boost库中sleep有两个方法: 1. 这个方法只能在线程中用, 在主线程 ...

  3. 2.Books

    Books示例说明了Qt中SQL类如何被Model/View框架使用,使用数据库中存储的信息,创建丰富的用户界面. 首先介绍使用SQL我们需要了解的类: 1.QSqlDatabase: QSqlDat ...

  4. laravel中的attach and detach toggle method

    创建模型 post  and  user 以及 users , posts ,user_post(favorities)测试数据 在此可以看上一篇中的数据,本次测试数据利用的上一篇的数据.detach ...

  5. jQuery中关于toggle的使用

    <!DOCTYPE html><html> <head> <meta charset="UTF-8"> <title>t ...

  6. Python的split()函数

    手册中关于split()用法如下: str.split(sep=None, maxsplit=-1)     Return a list of the words in the string, usi ...

  7. Struts2获取Action中的数据

    当我们用Struts2框架开发时,经常有要获取jsp页面的数据或者在jsp中获取后台传过来的数据(Action),那么怎么去获取自己想要的数据呢? 后台获取前端数据: 在java程序中生成要获取字段的 ...

  8. MongoDB整理笔记の指定命令和指定文件

    MongoDB shell 不仅仅是一个交互式的shell,它也支持执行指定javascript 文件,也支持执行指定的命令片断.有了这个特性,就可以将MongoDB 与linux shell 完美结 ...

  9. 让IE播放PPT

    在win7下安装office 2003,想让ppt在ie里播放,然后供winform调用,显示并播放ppt,操作如下 HKEY_LOCAL_MACHINE\SOFTWARE\Classes\Power ...

  10. Invoke()的使用

    (最近在看协程) Invoke()方法是一种委托机制 Invoke ( "SendMsg", 3 ), 意思是3秒之后调用 SendMsg() 方法 使用时应该注意以下几点: 1. ...