【BZOJ4849】[Neerc2016]Mole Tunnels

Description

鼹鼠们在底下开凿了n个洞,由n-1条隧道连接,对于任意的i>1,第i个洞都会和第i/2(取下整)个洞间有一条隧道,第i个洞内还有ci个食物能供最多ci只鼹鼠吃。一共有m只鼹鼠,第i只鼹鼠住在第pi个洞内,一天早晨,前k只鼹鼠醒来了,而后n-k只鼹鼠均在睡觉,前k只鼹鼠就开始觅食,最终他们都会到达某一个洞,使得所有洞的ci均大于等于该洞内醒着的鼹鼠个数,而且要求鼹鼠行动路径总长度最小。现对于所有的1<=k<=m,输出最小的鼹鼠行动路径的总长度,保证一定存在某种合法方案。

Input

第一行两个数n,m(1<=n,m<=100000),表示有n个洞,m只鼹鼠。
第二行n个整数ci表示第i个洞的食物数。
第三行m个整数pi表示第i只鼹鼠所在洞pi。

Output

输出一行m个整数,第i个整数表示当k=i时最小的鼹鼠行动路径总长度。

Sample Input

5 4 0 0 4 1 1 2 4 5 2

Sample Output

1 1 2 4

题解:一眼看到这道题,直接想到费用流,但是n太大了,不能直接跑费用流,但是我们发现题中给的是一棵完全二叉树,所以我们可以想一想怎么利用这个性质。

我们依旧沿用费用流的思想,假设我们扫到了第i只鼹鼠,我们先找到距离i最近的有空位置的点,然后在将那个点的剩余空间-1,再讲路径上所有的反向边流量+1(因为正向边的流量可以看做正无穷,所以我们不管)。现在我们的思路就很清晰了,所以我们只要找到距离i最近的有空位置的点就行了。

具体做法是先扫一遍整棵树,用f[i]表示在i的子树中距离i最近的点到i的距离,g[i]表示在i的子树中距离i最近的点的位置。查询的时候,从p[i]一步一步向上爬,不断用当前节点的 f值+爬上来的距离 更新答案,最后暴力重构路径上的所有节点的f,g值,因为保证是完全二叉树,所以复杂度是O(nlogn)的。

说着挺容易其实代码挺丑的~

#include <cstdio>
#include <cstring>
#include <iostream>
#define lson x<<1
#define rson x<<1|1
using namespace std;
const int maxn=100010;
typedef long long ll;
ll ans;
int n,m,sum,minn,pos,lca;
int p[maxn],c[maxn],g[maxn],f[maxn],v[maxn][2]; //0上1下
int main()
{
scanf("%d%d",&n,&m);
int i,j;
for(i=1;i<=n;i++)
scanf("%d",&c[i]);
memset(f,0x3f,sizeof(f));
for(i=n;i>=1;i--)
{
if(c[i]) f[i]=0,g[i]=i;
if(f[i>>1]>f[i]+1) f[i>>1]=f[i]+1,g[i>>1]=g[i];
}
for(i=1;i<=m;i++)
{
scanf("%d",&p[i]);
minn=1<<30,sum=0;
for(j=p[i];j;j>>=1)
{
if(f[j]+sum<minn) minn=f[j]+sum,pos=g[j],lca=j;
sum+=(v[j][0]>0)?(-1):1;
}
ans=ans+minn;
printf("%lld",ans);
if(i!=m) printf(" ");
c[pos]--;
for(j=p[i];j!=lca;j>>=1) v[j][0]?v[j][0]--:v[j][1]++;
for(j=pos;j!=lca;j>>=1) v[j][1]?v[j][1]--:v[j][0]++;
for(j=p[i];j!=lca;j>>=1)
{
f[j]=1<<30;
if(c[j]&&0<f[j]) f[j]=0,g[j]=j;
if((j<<1)<=n&&f[j<<1]+(v[j<<1][1]?-1:1)<f[j]) f[j]=f[j<<1]+(v[j<<1][1]?-1:1),g[j]=g[j<<1];
if((j<<1|1)<=n&&f[j<<1|1]+(v[j<<1|1][1]?-1:1)<f[j]) f[j]=f[j<<1|1]+(v[j<<1|1][1]?-1:1),g[j]=g[j<<1|1];
}
for(j=pos;j;j>>=1)
{
f[j]=1<<30;
if(c[j]&&0<f[j]) f[j]=0,g[j]=j;
if((j<<1)<=n&&f[j<<1]+(v[j<<1][1]?-1:1)<f[j]) f[j]=f[j<<1]+(v[j<<1][1]?-1:1),g[j]=g[j<<1];
if((j<<1|1)<=n&&f[j<<1|1]+(v[j<<1|1][1]?-1:1)<f[j]) f[j]=f[j<<1|1]+(v[j<<1|1][1]?-1:1),g[j]=g[j<<1|1];
}
}
return 0;
}

【BZOJ4849】[Neerc2016]Mole Tunnels 模拟费用流的更多相关文章

  1. BZOJ4849[Neerc2016]Mole Tunnels——模拟费用流+树形DP

    题目描述 鼹鼠们在底下开凿了n个洞,由n-1条隧道连接,对于任意的i>1,第i个洞都会和第i/2(取下整)个洞间有一条隧 道,第i个洞内还有ci个食物能供最多ci只鼹鼠吃.一共有m只鼹鼠,第i只 ...

  2. BZOJ 4849 [NEERC2016]Mole Tunnels (模拟费用流)

    题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=4849 题解 其实也是模拟费用流,但是这道题和一般的题目不一样,这道题是在一个完全二叉树上 ...

  3. [bzoj4849][Neerc2016]Mole Tunnels

    来自FallDream的博客,未经允许,请勿转载,谢谢 貌似是省队集训女队讲的题... 今天在bzoj找一道题无果,但是翻到了这道就顺便写了下. 鼹鼠们在底下开凿了n个洞,由n-1条隧道连接,对于任意 ...

  4. P6122-[NEERC2016]Mole Tunnels【模拟费用流】

    正题 题目链接:https://www.luogu.com.cn/problem/P6122 题目大意 给出\(n\)个点的一棵满二叉树,每个点有容量\(c_i\),\(m\)次从\(p_i\)处加一 ...

  5. 贪心(模拟费用流):NOIP2011 观光公交

    [问题描述] 风景迷人的小城Y 市,拥有n 个美丽的景点.由于慕名而来的游客越来越多,Y 市特意安排了一辆观光公交车,为游客提供更便捷的交通服务.观光公交车在第0 分钟出现在1号景点,随后依次前往2. ...

  6. BZOJ4977[Lydsy1708月赛]跳伞求生——贪心+堆+模拟费用流

    题目链接: 跳伞求生 可以将题目转化成数轴上有$n$个人和$m$个房子,坐标分别为$a_{i}$和$b_{i}$,每个人可以进一个他左边的房子,每个房子只能进一个人.每个房子有一个收益$c_{i}$, ...

  7. 【bzoj1150】[CTSC2007]数据备份Backup 模拟费用流+链表+堆

    题目描述 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味的,因此你想设计一个系统让不同的办公楼彼此之间互相备份,而你则坐在家中尽享计算机游戏 ...

  8. [UOJ455][UER #8]雪灾与外卖——堆+模拟费用流

    题目链接: [UOJ455]雪灾与外卖 题目描述:有$n$个送餐员(坐标为$x_{i}$)及$m$个餐厅(坐标为$y_{i}$,权值为$w_{i}$),每个送餐员需要前往一个餐厅,每个餐厅只能容纳$c ...

  9. 【CF280D】 k-Maximum Subsequence Sum ,线段树模拟费用流

    昨天考试被教育了一波.为了学习一下\(T3\)的科技,我就找到了这个远古时期的\(cf\)题(虽然最后\(T3\)还是不会写吧\(QAQ\)) 顾名思义,这个题目其实可以建成一个费用流的模型.我们用流 ...

随机推荐

  1. TestNG+Maven+IDEA环境搭建

    TestNG+Maven+IDEA环境搭建 前言: 主要进行TestNG测试环境的搭建 所需环境: 1.IDEA UItimate 2.JDK 3.Maven 一.创建工程 File –>new ...

  2. Java 多线程之 synchronized 和 volatile 的比較

    概述 在做多线程并发处理时,常常须要对资源进行可见性訪问和相互排斥同步操作.有时候,我们可能从前辈那里得知我们须要对资源进行 volatile 或是 synchronized 关键字修饰处理.但是,我 ...

  3. 使用Nginx+uWSGI+Django方法部署Django程序(下)

    在上一篇文章<五步教你实现使用Nginx+uWSGI+Django方法部署Django程序(上)>中,阐述了如何只使用uWSGI来部署Django程序. 当然,单单只有uWSGI是不够的, ...

  4. js bind 绑定this指向

    1.示例代码 <!DOCTYPE html> <html lang="zh"> <head> <meta charset="UT ...

  5. linux 安装安装rz/sz 和 ssh

    安装rz,sz yum install lrzsz; 安装ssh yum install openssh-server 查看已安装包 rpm -qa | grep ssh 更新yum源 1.备份 mv ...

  6. prototype 用法

    prototype使得js面向对象使用了prototype之后,使用它里面的属性或者函数 需要new出一个对象才可以使用.否则不使用prototype,直接向对象注入 function Person( ...

  7. Pattern Recognition and Machine Learning 模式识别与机器学习

    模式识别(PR)领域:     关注的是利⽤计算机算法⾃动发现数据中的规律,以及使⽤这些规律采取将数据分类等⾏动. 聚类:目标是发现数据中相似样本的分组. 反馈学习:是在给定的条件下,找到合适的动作, ...

  8. 【private HibernateTemplate template;】 的作用

    [private HibernateTemplate template;] 的作用 这个是在spring中定义了一个bean,它是org.springframework.orm.hibernate3. ...

  9. nginx服务器的负载均衡和动静分离(未完)

    安装nginx,我的博客里面有介绍源码和yum安装. 实战:使用nginx实现动静分离的负载均衡集群 实战:使用haproxy实现负载均衡集群 LB负载均衡集群分为两类:LVS(四层)和Nginx或p ...

  10. Python脚本性能剖析

    ################### #Python脚本性能剖析 ################### cProfile/profile/hotshot用于统计Python脚本各部分运行频率和耗费 ...