最长不下降子序列是一道非常经典的题目,我们假设题目如下:

有一个数组 $ a $,现在要从中抽取一个严格上升的子序列(子序列就是你可以从原序列里删除一些数,保留一部分数得到的新数列)(严格上升也就是不能相等只能递增),现在要求出这个子序列最长有多长?

举例来说,假设有一个数组 a = [10, 9, 2, 5, 3, 7, 101, 18]。这个数组的最长上升子序列是 [2, 3, 7, 101],这是从原数组中第3, 5, 6, 7个位置选取得到的,长度为4。(当然最后一个数字换成 18 也可以)

平方做法

通常来讲,平方做法很容易想到,我们开一个数组 $ f $ ,用 $ f_i $ 表示以 $ a_i $ 结尾的 LIS 的长度。我们从左往右计算每一个 $ f_i $ ,每一个 $ f_i $ 可能由 \(f_1, f_2...f_{i-1}\)得到。比方说假如 $ a_i > a_j $,那么 \(a_i\) 就可以接到 $ f_{i-1} $ 表示的序列后面,长度加一,枚举所有之前的 f,取最大值,最终就可以计算出来。

#include <vector>
#include <algorithm>
using namespace std; int longestIncreasingSubsequence(const vector<int>& a) {
int n = a.size();
vector<int> f(n, 1); // 初始化每个元素的LIS长度为1
for (int i = 0; i < n; i++) {
for (int j = 0; j < i; j++) {
if (a[i] > a[j]) {
f[i] = max(f[i], f[j] + 1);
}
}
}
return *max_element(f.begin(), f.end()); // 返回f中的最大值,即最长上升子序列的长度
} int main() {
vector<int> a = {10, 9, 2, 5, 3, 7, 101, 18};
int result = longestIncreasingSubsequence(a);
return result;
}

N log N 做法

更高效的方法是通过维护一个数组 $ tail $ 来实现,其中 $ tail_i $ 存储长度为 i 的所有上升子序列中末尾最小的元素(比如 $ tail_4 $ 表示所有长度为 4 的 LIS 里最后一个数字最小能达到多少)。在更新过程中,我们使用二分搜索来确定一个元素应当放置在 $ tail $ 中的位置。

我们还是从左向右来枚举,对于每个元素 $ a_i $,在 \(tail\) 中找到第一个大于 $ a_i $ 的位置。

  • 如果找到这样的位置,即表示之前有一个序列的末尾可以被替换,所以修改其 $ tail $ 值为新 $ a_i $
  • 如果没有找到,说明 $ a_i $ 比之前所有数字都大,那么把 $ a_i $ 追加到 $ tail $ 末尾,最长的上升序列长度成功加1.

对于 $ tail $ 来说,下标越大,条件越难满足,则能达到的最小值越大,所以 $ tail $ 显然是严格递增的,这不难理解,而每一次操作也维持了 $ tail $ 的单调性。

举例来说,现在\(tail = [3, 5, 6, 19, 25]\),而当前 $ a_i $ 为 8,可以找到 $ tail_4 = 19$ 这表明在我之前出现过一个长度为4,以 19 结尾的序列,以及一个长度为3,以小于8结尾的序列,那么这个长度为3的序列可以接上8,替换掉原来的19,一定更优

#include <vector>
#include <algorithm>
using namespace std; int longestIncreasingSubsequence(const vector<int>& a) {
vector<int> tail;
for (int x : a) {
auto it = lower_bound(tail.begin(), tail.end(), x);
if (it == tail.end()) {
tail.push_back(x); // 如果x大于tail中所有元素,追加到末尾
} else {
*it = x; // 替换为更小的值,保持序列最小
}
}
return tail.size(); // tail的大小就是最长上升子序列的长度
} int main() {
vector<int> a = {10, 9, 2, 5, 3, 7, 101, 18};
int result = longestIncreasingSubsequence(a);
return result;
}

获得具体的数列

除了得到最长长度,此方法也是支持把序列获取到的,增加一个数组,每一次更新 tail 时,来记录每个元素的前一个元素的索引,这里附加上 chatgpt 的代码:

def longest_non_decreasing_subsequence(arr):
from bisect import bisect_right if not arr:
return 0, [] dp = [] # 存放各长度最长不下降子序列的最小结尾元素的值
predecessor = [-1] * len(arr) # 前驱元素的索引
indices = [] # 存放各长度最长不下降子序列的最小结尾元素的索引 for i, x in enumerate(arr):
pos = bisect_right([arr[idx] for idx in indices], x)
if pos < len(indices):
indices[pos] = i
predecessor[i] = indices[pos-1] if pos > 0 else -1
else:
indices.append(i)
predecessor[i] = indices[-2] if len(indices) > 1 else -1 # 回溯找到最长不下降子序列
n = len(indices)
sequence = [0] * n
k = indices[-1]
for j in range(n-1, -1, -1):
sequence[j] = arr[k]
k = predecessor[k] return n, sequence # 示例
arr = [10, 9, 2, 5, 3, 7, 101, 18]
length, sequence = longest_non_decreasing_subsequence(arr)
print("Length:", length) # 输出长度
print("Sequence:", sequence) # 输出序列

严格上升和不下降

要从求最长严格上升子序列变为求最长不下降子序列(也就是允许序列中的元素相等),主要修改的部分就是二分查找部分。在严格上升的场景中,tail 不会出现相等值,我们寻找的是第一个大于等于当前元素的位置,而在不下降的场景中,要找到的是第一个大于当前元素的位置。

举例子来说,当要求变为严格不下降,$ tail $ 就有可能出现相等值,假设 $ tail = [1, 2, 2, 3, 3, 3, 5] $,且下一个 \(a_i\) 为 2。那么应该更新 \(a_2\) 第一个3。而扩展 $ tail $ 的条件也放宽为大于等于,具体代码就不再展示。

NlogN 求最长不下降子序列(LIS)的更多相关文章

  1. P1020 导弹拦截(nlogn求最长不下降子序列)

    题目描述 某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度.某天,雷达捕捉到敌国的导弹 ...

  2. SPOJ 3943 - Nested Dolls 最长不下降子序列LIS(二分写法)

    现在n(<=20000)个俄罗斯套娃,每个都有宽度wi和高度hi(均小于10000),要求w1<w2并且h1<h2的时候才可以合并,问最少能剩几个. [LIS]乍一看跟[这题]类似, ...

  3. 算法进阶 (LIS变形) 固定长度截取求最长不下降子序列【动态规划】【树状数组】

    先学习下LIS最长上升子序列 ​ 看了大佬的文章OTZ:最长上升子序列 (LIS) 详解+例题模板 (全),其中包含普通O(n)算法*和以LIS长度及末尾元素成立数组的普通O(nlogn)算法,当然还 ...

  4. JDOJ 1946 求最长不下降子序列个数

    Description 设有一个整数的序列:b1,b2,…,bn,对于下标i1<i2<…<im,若有bi1≤bi2≤…≤bim 则称存在一个长度为m的不下降序列. 现在有n个数,请你 ...

  5. HDU 1025 Constructing Roads In JGShining's Kingdom[动态规划/nlogn求最长非递减子序列]

    Constructing Roads In JGShining's Kingdom Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65 ...

  6. 求最长不下降子序列(nlogn)

    最长递增子序列问题:在一列数中寻找一些数,这些数满足:任意两个数a[i]和a[j],若i<j,必有a[i]<a[j],这样最长的子序列称为最长递增子序列. 设dp[i]表示以i为结尾的最长 ...

  7. HDU 1087 最长不下降子序列 LIS DP

    Nowadays, a kind of chess game called “Super Jumping! Jumping! Jumping!” is very popular in HDU. May ...

  8. Monkey and Banana(dp,求最长的下降子序列)

    A group of researchers are designing an experiment to test the IQ of a monkey. They will hang a bana ...

  9. nlogn的最长不下降子序列【tyvj1254挑选士兵】

    var a,d:Array[-..]of longint; i,n,m,k,l:longint; function erfen(x:longint):longint; var mid,h,t:long ...

  10. tyvj 1049 最长不下降子序列 n^2/nlogn

    P1049 最长不下降子序列 时间: 1000ms / 空间: 131072KiB / Java类名: Main 描述 求最长不下降子序列的长度 输入格式 第一行为n,表示n个数第二行n个数 输出格式 ...

随机推荐

  1. 华为高性能计算(HPC)文档——技术支持>智能计算解决方案>高性能计算>HPC

    链接地址: https://support.huawei.com/enterprise/zh/server-solutions/hpc-pid-253585671 ================== ...

  2. 一群伪专家讨论“motherland”和“fatherland”,说说个人的观点

    看了一个视频: 中国的文化里在找妈,美国的文化里在找爸!如何真正教育子女? ============================================= ================ ...

  3. git在idea中的冲突解决(非常重要)

    1.什么是冲突 冲突是指当你在提交或者更新代码时被合并的文件与当前文件不一致.读起来有点绕,结合下面的案例理解. 从上面对冲突的定义来看,冲突时发生在同一个文件上的. 2.生产上冲突的场景 常见冲突的 ...

  4. Odd and Even Zeroes 题解

    前言 题目链接:洛谷:UVA. 题目简述 定义 \(\operatorname{count}(num)\) 表示 \(num\) 末尾 \(0\) 的个数.给出 \(n\)(\(n \leq 10^{ ...

  5. Apache DolphinScheduler(2.x和3.x版本) 本地环境搭建教程一览

    在迅速变化的技术领域,本地环境的搭建和调试对于软件开发的效率和效果至关重要.本文将详细介绍如何为Apache DolphinScheduler搭建一个高效的本地开发环境,包括2.x和3.x版本的设置方 ...

  6. 【导师招募】Apache DolphinScheduler 社区又又又入选开源之夏啦!

    很高兴和大家宣布,Apache DolphinScheduler 社区今年再次成功入选入选由中国科学院软件研究所开源软件供应链点亮计划发起的"开源之夏"活动. 入选公示链接:htt ...

  7. JavaScript 事件循环竟还能这样玩!

    JavaScript 是一种单线程的编程语言,这意味着它一次只能执行一个任务.为了能够处理异步操作,JavaScript 使用了一种称为事件循环(Event Loop)的机制. 本文将深入探讨事件循环 ...

  8. Linux 进程编程入门

    关于进程和线程的关系,之前一口君写过这几篇文章,大家可以参考下. 本文从头带着大家一起学习Linux进程 <搞懂进程组.会话.控制终端关系,才能明白守护进程干嘛的?> <[粉丝问答6 ...

  9. 模板链表类的扩展(QListEx<T>)

    以前写的链表都是比较简单的,插入节点是在头节点上,所以循环链表时都是从最后一个数据往前找的,给人的感觉是倒着的, 今天写一个在链表尾部插入数据 1.链表节点类的定义 /链表节点类 template & ...

  10. 金融、支付行业的开发者不得不知道的float、double计算误差问题

    为什么浮点数 float 或 double 运算的时候会有精度丢失的风险呢? <阿里巴巴 Java 开发手册>中提到:"浮点数之间的等值判断,基本数据类型不能用 == 来比较,包 ...