https://www.britannica.com/science/probability-theory

https://www.britannica.com/biography/David-Blackwell

Random Event:

Probability Function;

Distribution Function:

Expectation/Mean;

Deviation/Var:Variance/STD:Standard Deviation/CV: Coefficient of Variance/Degree of Liberty/Freedom

Chebyshev Inequality/Theorem:

https://www.britannica.com/science/Chebyshevs-inequality

Chebyshev’s inequality, also called Bienaymé-Chebyshev inequality, in probability theory, a theorem that characterizes the dispersion of data away from its mean (average). The general theorem is attributed to the 19th-century Russian mathematician Pafnuty Chebyshev, though credit for it should be shared with the French mathematician Irénée-Jules Bienaymé, whose (less general) 1853 proof predated Chebyshev’s by 14 years.

Chebyshev’s inequality puts an upper bound on the probability that an observation should be far from its mean. It requires only two minimal conditions:

(1) that the underlying distribution have a mean

(2) that the average size of the deviations away from this mean (as gauged by the standard deviation) not be infinite.

Chebyshev’s inequality then states that the probability that an observation will be more than k standard deviations from the mean is at most 1/k2. Chebyshev used the inequality to prove his version of the law of large numbers.

But, Since with virtually no restriction on the shape of an underlying distribution,

To anyone looking for a precise statement on the probability of a large deviation. To achieve this goal, people usually try to justify a specific error distribution, such as the normal distribution as proposed by the German mathematician Carl Friedrich Gauss. Gauss also developed a tighter bound, 4/9k2 (for k > 2/Square root of√3), on the probability of a large deviation by imposing the natural restriction that the error distribution decline symmetrically from a maximum at 0.

The difference between these values is substantial. According to Chebyshev’s inequality, the probability that a value will be more than two standard deviations from the mean (k = 2) cannot exceed 25 percent. Gauss’s bound is 11 percent, and the value for the normal distribution is just under 5 percent. Thus, it is apparent that Chebyshev’s inequality is useful only as a theoretical tool for proving generally applicable theorems, not for generating tight probability bounds.

  • Richard Routledge

Uniform Distribution:

U(a, b):

  • F(x) = x ·1/(b-a)
  • p(x) = 1/(b-a) if q<x<b; p(x) = 0 else.
  • E(x) = (a+b)/2

Cauchy Distribution:

  • F(x) = [arctan(x) + pi/2 ]·1/pi
  • p(x) = [1/(1+x^2)] · 1/pi
  • E(x) : non-exist

Gaussian/Normal Distribution:

https://www.britannica.com/topic/normal-distribution

normal distribution, also called Gaussian distribution, the most common distribution function for independent, randomly generated variables. Its familiar bell-shaped curve is ubiquitous in statistical reports, from survey analysis and quality control to resource allocation.

The graph of the normal distribution is characterized by two parameters: the mean, or average, which is the maximum of the graph and about which the graph is always symmetric; and the standard deviation, which determines the amount of dispersion away from the mean. A small standard deviation (compared with the mean) produces a steep graph, whereas a large standard deviation (again compared with the mean) produces a flat graph. See the figure.

Distributions: Chebyshev Inequality | Uniform | Cauchy | Normal/Gaussian的更多相关文章

  1. init.uniform / unit.normal

    均匀分布nn.init.uniform(tensor,a=0,b=1)tensor -n维的torch.Tensora 均匀分布的下界,默认值为0b 均匀分布的上界,默认值为1 正态分布torcn.n ...

  2. Python模块(radom)

    radom radom模块提供了随机生成对象的方法 Help on module random: NAME random - Random variable generators. FILE /usr ...

  3. python模块:random

    """Random variable generators. integers -------- uniform within range sequences ----- ...

  4. radom

    radom模块提供了随机生成对象的方法 Help on module random: NAME random - Random variable generators. FILE /usr/local ...

  5. 使用Pydoc生成文档

    Python中本身带有很多实用的工具,如pydoc.pydoc模块主要用来从Python模块中提取信息并生成文档. 使用方法 在Windows和Linux下的使用方法有些区别. Windows pyt ...

  6. Python中生成随机数

    目录 1. random模块 1.1 设置随机种子 1.2 random模块中的方法 1.3 使用:生成整形随机数 1.3 使用:生成序列随机数 1.4 使用:生成随机实值分布 2. numpy.ra ...

  7. pytorch系列 -- 9 pytorch nn.init 中实现的初始化函数 uniform, normal, const, Xavier, He initialization

    本文内容:1. Xavier 初始化2. nn.init 中各种初始化函数3. He 初始化 torch.init https://pytorch.org/docs/stable/nn.html#to ...

  8. Study note for Continuous Probability Distributions

    Basics of Probability Probability density function (pdf). Let X be a continuous random variable. The ...

  9. Sampling Distributions and Central Limit Theorem in R(转)

    The Central Limit Theorem (CLT), and the concept of the sampling distribution, are critical for unde ...

  10. #np.random.normal,产生制定分布的数集(默认是标准正态分布)

    http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.normal.html #np.random.normal,产生制定分 ...

随机推荐

  1. Linux设置每晚定时备份Oracle数据表

    先新建目录 该路径:/home/oracle/backup 该名称:DATA_PATH shell脚本 export ORACLE_BASE=/home/oracle/app export ORACL ...

  2. 解锁UV工具新玩法:让Python脚本运行更高效的实用技巧

    作为Python开发者,你是否经常被依赖安装的漫长等待.虚拟环境的繁琐管理,或是脚本分享时"环境不一致"的问题困扰? 近年来,一款名为UV的工具悄然兴起,它不仅以极速安装依赖著称, ...

  3. Linux系统搭建单机MySQL8.0.26版本

    概述 本文主要是写Ubuntu22.04搭建MySQL8.0.26版本 环境信息 IP 系统 规格 10.0.0.10 Ubuntu22.04 2c4g 数据库服务安装步骤 下载前置依赖 # 下载li ...

  4. WO Mic - 免费麦克风

    WO Mic可以将您的手机变成电脑麦克风.您无需支付一分钱购买任何设备.如果您选择无线传输,它也是便携的.数百万用户已经安装并每天都在使用它进行通话.录音.语音遥控等活动. 三大组件协同工作以实现这一 ...

  5. 【工具】Vscode翻译插件推荐(不用谷歌翻译api、支持短句英汉互译、支持查词、支持自动补全、不需要浏览器)

    2024/04/24说明:这篇暂时修改为粉丝可见,因为正在冲粉丝量,等到我弄完了粉丝量的要求,我就改回来!不方便看到全文的小伙伴不好意思!! 需求: 1)偶尔需要查英文生词: 2)有时候想不起来中文对 ...

  6. Axure RP医疗在线挂号问诊原型图医院APP原形模板

    Axure RP医疗在线挂号问诊原型图医院APP原形模板 医疗在线挂号问诊Axure RP原型图医院APP原形模板,是一款原创的医疗类APP,设计尺寸采用iPhone13(375*812px),原型图 ...

  7. 关于正点原子input子系统,驱动中按键中断只检测了上升或下降沿却可以实现连按(EV_REP)的原因

    问题 在学习到Linux内核input子系统时,产生了一个疑惑.可以看到,我们改造按键中断驱动程序(请见keyinputdriver.c(内核驱动代码)),通过检测按键的上升沿和下降沿,在中断处理函数 ...

  8. DataFrame.iterrows的一种用法

    import pandas as pd import numpy as np help(pd.DataFrame.iterrows) Help on function iterrows in modu ...

  9. # Mit 6.824 Raft实验 2A 2B

    Mit 6.824 Raft实验 2A 2B Author: Minghao Zhou 这个项目写了好久,从一点也看不懂开始,到最后debug就和回家一样自然,成就感还是很足的哈哈.看大佬的架构和代码 ...

  10. 基于 A2A 协议的 LlamaIndex 文件聊天工作流

    本示例展示了一个使用 LlamaIndex Workflows 构建并通过 A2A 协议公开的对话代理.它展示了文件上传和解析.支持多轮对话的对话交互.流式响应/更新以及内联引用. 源代码 a2a l ...