Distributions: Chebyshev Inequality | Uniform | Cauchy | Normal/Gaussian
https://www.britannica.com/science/probability-theory
https://www.britannica.com/biography/David-Blackwell
Random Event:
Probability Function;
Distribution Function:
Expectation/Mean;
Deviation/Var:Variance/STD:Standard Deviation/CV: Coefficient of Variance/Degree of Liberty/Freedom
Chebyshev Inequality/Theorem:
https://www.britannica.com/science/Chebyshevs-inequality
Chebyshev’s inequality, also called Bienaymé-Chebyshev inequality, in probability theory, a theorem that characterizes the dispersion of data away from its mean (average). The general theorem is attributed to the 19th-century Russian mathematician Pafnuty Chebyshev, though credit for it should be shared with the French mathematician Irénée-Jules Bienaymé, whose (less general) 1853 proof predated Chebyshev’s by 14 years.
Chebyshev’s inequality puts an upper bound on the probability that an observation should be far from its mean. It requires only two minimal conditions:
(1) that the underlying distribution have a mean
(2) that the average size of the deviations away from this mean (as gauged by the standard deviation) not be infinite.
Chebyshev’s inequality then states that the probability that an observation will be more than k standard deviations from the mean is at most 1/k2. Chebyshev used the inequality to prove his version of the law of large numbers.
But, Since with virtually no restriction on the shape of an underlying distribution,
To anyone looking for a precise statement on the probability of a large deviation. To achieve this goal, people usually try to justify a specific error distribution, such as the normal distribution as proposed by the German mathematician Carl Friedrich Gauss. Gauss also developed a tighter bound, 4/9k2 (for k > 2/Square root of√3), on the probability of a large deviation by imposing the natural restriction that the error distribution decline symmetrically from a maximum at 0.
The difference between these values is substantial. According to Chebyshev’s inequality, the probability that a value will be more than two standard deviations from the mean (k = 2) cannot exceed 25 percent. Gauss’s bound is 11 percent, and the value for the normal distribution is just under 5 percent. Thus, it is apparent that Chebyshev’s inequality is useful only as a theoretical tool for proving generally applicable theorems, not for generating tight probability bounds.
- Richard Routledge
Uniform Distribution:
U(a, b):
- F(x) = x ·1/(b-a)
- p(x) = 1/(b-a) if q<x<b; p(x) = 0 else.
- E(x) = (a+b)/2
Cauchy Distribution:
- F(x) = [arctan(x) + pi/2 ]·1/pi
- p(x) = [1/(1+x^2)] · 1/pi
- E(x) : non-exist
Gaussian/Normal Distribution:
https://www.britannica.com/topic/normal-distribution
normal distribution, also called Gaussian distribution, the most common distribution function for independent, randomly generated variables. Its familiar bell-shaped curve is ubiquitous in statistical reports, from survey analysis and quality control to resource allocation.
The graph of the normal distribution is characterized by two parameters: the mean, or average, which is the maximum of the graph and about which the graph is always symmetric; and the standard deviation, which determines the amount of dispersion away from the mean. A small standard deviation (compared with the mean) produces a steep graph, whereas a large standard deviation (again compared with the mean) produces a flat graph. See the figure.
Distributions: Chebyshev Inequality | Uniform | Cauchy | Normal/Gaussian的更多相关文章
- init.uniform / unit.normal
均匀分布nn.init.uniform(tensor,a=0,b=1)tensor -n维的torch.Tensora 均匀分布的下界,默认值为0b 均匀分布的上界,默认值为1 正态分布torcn.n ...
- Python模块(radom)
radom radom模块提供了随机生成对象的方法 Help on module random: NAME random - Random variable generators. FILE /usr ...
- python模块:random
"""Random variable generators. integers -------- uniform within range sequences ----- ...
- radom
radom模块提供了随机生成对象的方法 Help on module random: NAME random - Random variable generators. FILE /usr/local ...
- 使用Pydoc生成文档
Python中本身带有很多实用的工具,如pydoc.pydoc模块主要用来从Python模块中提取信息并生成文档. 使用方法 在Windows和Linux下的使用方法有些区别. Windows pyt ...
- Python中生成随机数
目录 1. random模块 1.1 设置随机种子 1.2 random模块中的方法 1.3 使用:生成整形随机数 1.3 使用:生成序列随机数 1.4 使用:生成随机实值分布 2. numpy.ra ...
- pytorch系列 -- 9 pytorch nn.init 中实现的初始化函数 uniform, normal, const, Xavier, He initialization
本文内容:1. Xavier 初始化2. nn.init 中各种初始化函数3. He 初始化 torch.init https://pytorch.org/docs/stable/nn.html#to ...
- Study note for Continuous Probability Distributions
Basics of Probability Probability density function (pdf). Let X be a continuous random variable. The ...
- Sampling Distributions and Central Limit Theorem in R(转)
The Central Limit Theorem (CLT), and the concept of the sampling distribution, are critical for unde ...
- #np.random.normal,产生制定分布的数集(默认是标准正态分布)
http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.normal.html #np.random.normal,产生制定分 ...
随机推荐
- 题解:UVA11214 守卫键盘 Guarding the Chessboard
题意:输入一个 n×mn\times mn×m 棋盘,某些格子有标记.用最少的皇后守卫(即占据或者攻击)所有带标记的格子. 分析:因为不知道放几个皇后可以守卫所有带标记的格子,即回溯法求解时解答树的深 ...
- git 更新和强制更新失败
Your local changes to the following files would be overwritten by mergeerror: Your local changes to ...
- Android frida hook (学习分享)
frida模块 参考: https://www.52pojie.cn/thread-1823118-1-1.html https://www.52pojie.cn/thread-1840174-1-1 ...
- 【工具】Android|Android Studio 长颈鹿版本安装下载使用详解
版本:2022.3.1.22, https://redirector.gvt1.com/edgedl/android/studio/install/2022.3.1.22/android-studio ...
- 【记录】IDA|Ollydbg|两种软件中查看指令在原二进制文件中的位置,及查看原二进制文件位置对应的反汇编指令的方式
文章目录 在IDA中查看指令地址 在Ollydbg中查看指令地址 在Ollydbg中查看地址对应的指令 在IDA中查看指令地址 在Ollydbg中查看指令地址 ollydbg在对应指令处,右键-查看- ...
- Flutter内嵌H5页面与前端通信:实现无缝交互的技术浅析
@charset "UTF-8"; .markdown-body { line-height: 1.75; font-weight: 400; font-size: 15px; o ...
- Seata源码—4.全局事务拦截与开启事务处理
大纲 1.Seata Server的启动入口的源码 2.Seata Server的网络服务器启动的源码 3.全局事务拦截器的核心变量 4.全局事务拦截器的初始化源码 5.全局事务拦截器的AOP切面拦截 ...
- PHP MD5强碰撞
MD5强碰撞 搬得这个师傅的 https://www.cnblogs.com/kuaile1314/p/11968108.html 可以看到,使用了三个等号,这个时候PHP会先检查两边的变量类型,如果 ...
- flutter3-deepseek流式AI模板|Flutter3.27+Dio+DeepSeeek聊天ai助手
基于Flutter3+DeepSeek-V3+Markdown跨平台流式ai打字输出问答助手. flutter3-deepseek-chat跨平台ai流式实例,基于Flutter3.27+Dart3+ ...
- DeepSeek-V3
一.与DeepSeek-v2比较 1. 架构和参数(Architecture and Parameters) DeepSeek-V3采用 Mixture-of-Experts (MoE) 架构,共有6 ...