李沐动手学深度学习V2

文章内容说明

本文主要是自己学习过程中的随手笔记,需要自取

课程参考B站https://space.bilibili.com/1567748478?spm_id_from=333.788.0.0

课件等信息原视频简介中有


卷积神经网络

经典卷积神经网络LeNet



深度卷积神经网络AlexNet

AlexNet与LeNet对比:



1.AlexNet比相对较小的LeNet5要深得多。AlexNet由八层组成:五个卷积层、两个全连接隐藏层和一个全连接输出层。

2.AlexNet使用ReLU而不是sigmoid作为其激活函数。

CODE

import torch
from torch import nn
from d2l import torch as d2l net = nn.Sequential(
# 这里使用一个11*11的更大窗口来捕捉对象。
# 同时,步幅为4,以减少输出的高度和宽度。
# 另外,输出通道的数目远大于LeNet
nn.Conv2d(1, 96, kernel_size=11, stride=4, padding=1), nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2),
# 减小卷积窗口,使用填充为2来使得输入与输出的高和宽一致,且增大输出通道数
nn.Conv2d(96, 256, kernel_size=5, padding=2), nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2),
# 使用三个连续的卷积层和较小的卷积窗口。
# 除了最后的卷积层,输出通道的数量进一步增加。
# 在前两个卷积层之后,汇聚层不用于减少输入的高度和宽度
nn.Conv2d(256, 384, kernel_size=3, padding=1), nn.ReLU(),
nn.Conv2d(384, 384, kernel_size=3, padding=1), nn.ReLU(),
nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Flatten(),
# 这里,全连接层的输出数量是LeNet中的好几倍。使用dropout层来减轻过拟合
nn.Linear(6400, 4096), nn.ReLU(),
nn.Dropout(p=0.5),
nn.Linear(4096, 4096), nn.ReLU(),
nn.Dropout(p=0.5),
# 最后是输出层。由于这里使用Fashion-MNIST,所以用类别数为10,而非论文中的1000
nn.Linear(4096, 10)) # 观察每一层输出形状
X = torch.randn(1, 1, 224, 224)
for layer in net:
X=layer(X)
print(layer.__class__.__name__,'output shape:\t',X.shape) # 读取数据集Fashion-MNIST
batch_size = 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224) #训练
lr, num_epochs = 0.01, 10
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

使用块的网络VGG



可以多个VGG块串一起组建更深的网络,块中的3×3卷积层可以n次

CODE


import torch
from torch import nn
from d2l import torch as d2l # VGG块
def vgg_block(num_convs, in_channels, out_channels):
layers = []
for _ in range(num_convs):
layers.append(nn.Conv2d(in_channels, out_channels,
kernel_size=3, padding=1))
layers.append(nn.ReLU())
in_channels = out_channels
layers.append(nn.MaxPool2d(kernel_size=2,stride=2))
return nn.Sequential(*layers) # VGG网络_VGG-11(多个块串在一起)
conv_arch = ((1, 64), (1, 128), (2, 256), (2, 512), (2, 512)) def vgg(conv_arch):
conv_blks = []
in_channels = 1
# 卷积层部分
for (num_convs, out_channels) in conv_arch:
conv_blks.append(vgg_block(num_convs, in_channels, out_channels))
in_channels = out_channels return nn.Sequential(
*conv_blks, nn.Flatten(),
# 全连接层部分
nn.Linear(out_channels * 7 * 7, 4096), nn.ReLU(), nn.Dropout(0.5),
nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(0.5),
nn.Linear(4096, 10)) net = vgg(conv_arch) # 观察每层输出情况
X = torch.randn(size=(1, 1, 224, 224))
for blk in net:
X = blk(X)
print(blk.__class__.__name__,'output shape:\t',X.shape) # 训练模型
# 减少通道数(计算量大故减少)
ratio = 4
small_conv_arch = [(pair[0], pair[1] // ratio) for pair in conv_arch]
net = vgg(small_conv_arch) # 训练
lr, num_epochs, batch_size = 0.05, 10, 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

网络中的网络NiN

全连接层参数太多了,nin直接用卷积层替代全连接层,通过步长为2的池化层减半大小

CODE

import torch
from torch import nn
from d2l import torch as d2l # nin块
def nin_block(in_channels, out_channels, kernel_size, strides, padding):
return nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size, strides, padding),
nn.ReLU(),
nn.Conv2d(out_channels, out_channels, kernel_size=1), nn.ReLU(),
nn.Conv2d(out_channels, out_channels, kernel_size=1), nn.ReLU()) # nin网络模型
net = nn.Sequential(
nin_block(1, 96, kernel_size=11, strides=4, padding=0),
nn.MaxPool2d(3, stride=2),
nin_block(96, 256, kernel_size=5, strides=1, padding=2),
nn.MaxPool2d(3, stride=2),
nin_block(256, 384, kernel_size=3, strides=1, padding=1),
nn.MaxPool2d(3, stride=2),
nn.Dropout(0.5),
# 标签类别数是10
nin_block(384, 10, kernel_size=3, strides=1, padding=1),
nn.AdaptiveAvgPool2d((1, 1)),
# 将四维的输出转成二维的输出,其形状为(批量大小,10)
nn.Flatten()) # 每个块输出形状
X = torch.rand(size=(1, 1, 224, 224))
for layer in net:
X = layer(X)
print(layer.__class__.__name__,'output shape:\t', X.shape) # 训练模型
lr, num_epochs, batch_size = 0.1, 10, 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

含并行连结的网络GoogleNet/Inception V3

Inception块(盗梦空间inception)



GoogLeNet模型(模型参数小,内存少)

用了9个inception块,其中构造不一,详细看视频讲解

CODE

import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l # Inception块
class Inception(nn.Module):
# c1--c4是每条路径的输出通道数
def __init__(self, in_channels, c1, c2, c3, c4, **kwargs):
super(Inception, self).__init__(**kwargs)
# 线路1,单1x1卷积层
self.p1_1 = nn.Conv2d(in_channels, c1, kernel_size=1)
# 线路2,1x1卷积层后接3x3卷积层
self.p2_1 = nn.Conv2d(in_channels, c2[0], kernel_size=1)
self.p2_2 = nn.Conv2d(c2[0], c2[1], kernel_size=3, padding=1)
# 线路3,1x1卷积层后接5x5卷积层
self.p3_1 = nn.Conv2d(in_channels, c3[0], kernel_size=1)
self.p3_2 = nn.Conv2d(c3[0], c3[1], kernel_size=5, padding=2)
# 线路4,3x3最大汇聚层后接1x1卷积层
self.p4_1 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)
self.p4_2 = nn.Conv2d(in_channels, c4, kernel_size=1) def forward(self, x):
p1 = F.relu(self.p1_1(x))
p2 = F.relu(self.p2_2(F.relu(self.p2_1(x))))
p3 = F.relu(self.p3_2(F.relu(self.p3_1(x))))
p4 = F.relu(self.p4_2(self.p4_1(x)))
# 在通道维度上连结输出
return torch.cat((p1, p2, p3, p4), dim=1) # 实现GoogLeNet模型每个模块
b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1)) b2 = nn.Sequential(nn.Conv2d(64, 64, kernel_size=1),
nn.ReLU(),
nn.Conv2d(64, 192, kernel_size=3, padding=1),
nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1)) b3 = nn.Sequential(Inception(192, 64, (96, 128), (16, 32), 32),
Inception(256, 128, (128, 192), (32, 96), 64),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1)) b4 = nn.Sequential(Inception(480, 192, (96, 208), (16, 48), 64),
Inception(512, 160, (112, 224), (24, 64), 64),
Inception(512, 128, (128, 256), (24, 64), 64),
Inception(512, 112, (144, 288), (32, 64), 64),
Inception(528, 256, (160, 320), (32, 128), 128),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1)) b5 = nn.Sequential(Inception(832, 256, (160, 320), (32, 128), 128),
Inception(832, 384, (192, 384), (48, 128), 128),
nn.AdaptiveAvgPool2d((1,1)),
nn.Flatten()) net = nn.Sequential(b1, b2, b3, b4, b5, nn.Linear(1024, 10)) # 输出形状变化
X = torch.rand(size=(1, 1, 96, 96))
for layer in net:
X = layer(X)
print(layer.__class__.__name__,'output shape:\t', X.shape) # 训练模型
lr, num_epochs, batch_size = 0.1, 10, 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

ResNet残差网络

为防止越大的模型偏离最优值



使其变为f(x) = x + g(x)





下面为ResNet-18架构,4个由残差块组成的模块

CODE

import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l class Residual(nn.Module): #@save
def __init__(self, input_channels, num_channels,
use_1x1conv=False, strides=1):
super().__init__()
self.conv1 = nn.Conv2d(input_channels, num_channels,
kernel_size=3, padding=1, stride=strides)
self.conv2 = nn.Conv2d(num_channels, num_channels,
kernel_size=3, padding=1)
if use_1x1conv:
self.conv3 = nn.Conv2d(input_channels, num_channels,
kernel_size=1, stride=strides)
else:
self.conv3 = None
self.bn1 = nn.BatchNorm2d(num_channels)
self.bn2 = nn.BatchNorm2d(num_channels) def forward(self, X):
Y = F.relu(self.bn1(self.conv1(X)))
Y = self.bn2(self.conv2(Y))
if self.conv3:
X = self.conv3(X)
Y += X
return F.relu(Y) # 输入输出形状一致情况
blk = Residual(3,3)
X = torch.rand(4, 3, 6, 6)
Y = blk(X)
Y.shape # 增加输出通道数的同时,减半输出的高和宽
blk = Residual(3,6, use_1x1conv=True, strides=2)
blk(X).shape # ResNet模型
b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
nn.BatchNorm2d(64), nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1)) def resnet_block(input_channels, num_channels, num_residuals,
first_block=False):
blk = []
for i in range(num_residuals):
if i == 0 and not first_block:
blk.append(Residual(input_channels, num_channels,
use_1x1conv=True, strides=2))
else:
blk.append(Residual(num_channels, num_channels))
return blk # 在ResNet加入所有残差块,这里每个模块使用2个残差块
b2 = nn.Sequential(*resnet_block(64, 64, 2, first_block=True))
b3 = nn.Sequential(*resnet_block(64, 128, 2))
b4 = nn.Sequential(*resnet_block(128, 256, 2))
b5 = nn.Sequential(*resnet_block(256, 512, 2)) net = nn.Sequential(b1, b2, b3, b4, b5,
nn.AdaptiveAvgPool2d((1,1)),
nn.Flatten(), nn.Linear(512, 10)) # 输出形状变化
X = torch.rand(size=(1, 1, 224, 224))
for layer in net:
X = layer(X)
print(layer.__class__.__name__,'output shape:\t', X.shape) # 模型训练
lr, num_epochs, batch_size = 0.05, 10, 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

李沐动手学深度学习V2-chapter_convolutional-modern的更多相关文章

  1. 对比《动手学深度学习》 PDF代码+《神经网络与深度学习 》PDF

    随着AlphaGo与李世石大战的落幕,人工智能成为话题焦点.AlphaGo背后的工作原理"深度学习"也跳入大众的视野.什么是深度学习,什么是神经网络,为何一段程序在精密的围棋大赛中 ...

  2. 【动手学深度学习】Jupyter notebook中 import mxnet出错

    问题描述 打开d2l-zh目录,使用jupyter notebook打开文件运行,import mxnet 出现无法导入mxnet模块的问题, 但是命令行运行是可以导入mxnet模块的. 原因: 激活 ...

  3. 小白学习之pytorch框架(2)-动手学深度学习(begin-random.shuffle()、torch.index_select()、nn.Module、nn.Sequential())

    在这向大家推荐一本书-花书-动手学深度学习pytorch版,原书用的深度学习框架是MXNet,这个框架经过Gluon重新再封装,使用风格非常接近pytorch,但是由于pytorch越来越火,个人又比 ...

  4. mxnet 动手学深度学习

    http://zh.gluon.ai/chapter_crashcourse/introduction.html 强化学习(Reinforcement Learning) 如果你真的有兴趣用机器学习开 ...

  5. 动手学深度学习14- pytorch Dropout 实现与原理

    方法 从零开始实现 定义模型参数 网络 评估函数 优化方法 定义损失函数 数据提取与训练评估 pytorch简洁实现 小结 针对深度学习中的过拟合问题,通常使用丢弃法(dropout),丢弃法有很多的 ...

  6. 动手学深度学习9-多层感知机pytorch

    多层感知机 隐藏层 激活函数 小结 多层感知机 之前已经介绍过了线性回归和softmax回归在内的单层神经网络,然后深度学习主要学习多层模型,后续将以多层感知机(multilayer percetro ...

  7. 动手学深度学习6-认识Fashion_MNIST图像数据集

    获取数据集 读取小批量样本 小结 本节将使用torchvision包,它是服务于pytorch深度学习框架的,主要用来构建计算机视觉模型. torchvision主要由以下几个部分构成: torchv ...

  8. 动手学深度学习1- pytorch初学

    pytorch 初学 Tensors 创建空的tensor 创建随机的一个随机数矩阵 创建0元素的矩阵 直接从已经数据创建tensor 创建新的矩阵 计算操作 加法操作 转化形状 tensor 与nu ...

  9. 《动手学深度学习》系列笔记—— 1.2 Softmax回归与分类模型

    目录 softmax的基本概念 交叉熵损失函数 模型训练和预测 获取Fashion-MNIST训练集和读取数据 get dataset softmax从零开始的实现 获取训练集数据和测试集数据 模型参 ...

  10. 动手学深度学习17-kaggle竞赛实践小项目房价预测

    kaggle竞赛 获取和读取数据集 数据预处理 找出所有数值型的特征,然后标准化 处理离散值特征 转化为DNArray后续训练 训练模型 k折交叉验证 预测样本,并提交结果 kaggle竞赛 本节将动 ...

随机推荐

  1. 设置Docker的默认文件存储位置

    对于windows下,直接修改docker desktop界面的配置项目.对于rocky linux下面,对应的配置文件存储在: vim /etc/docker/daemon.json 文件可以配置镜 ...

  2. 开源产品测评之 SQL 上线能力

    背景 近期,我司准备引入一款 SQL 审核产品来供内部流程使用,解决目前 SQL 人工上线的流程管控问题,目标是对业内的开源产品进行调研,选型一款作为落地方案,后期如果内部有需求可能会进行二次开发.我 ...

  3. 【sprinb-boot】@ComponentScan 跳过扫描 excludeFilters

    @ComponentScan(excludeFilters = @ComponentScan.Filter(type = FilterType.ANNOTATION, classes = {Contr ...

  4. Qt/C++如何选择使用哪一种地图内核/不同地图的优缺点/百度高德腾讯地图/天地图/谷歌地图

    一.前言说明 最近花了大半年时间,专门研究这个地图组件,几乎把各种地图的官网的手册翻了个遍,亲自写代码验证了一遍,各种API函数接口和功能全部实战一遍,然后从中提取共性,做出了基类,以及通用函数类,子 ...

  5. JMeter:强大的性能测试工具

    揭秘 JMeter:性能测试的得力助手 宝子们,今天咱来唠唠在软件测试这旮旯里超厉害的 JMeter!这玩意儿就像是个超级侦探,能帮咱摸清楚软件系统在人多手杂的时候到底表现咋样. 一.JMeter 是 ...

  6. 内存吞金兽(Elasticsearch)的那些事儿 -- 写入&检索原理

    系列目录 内存吞金兽(Elasticsearch)的那些事儿 -- 认识一下 内存吞金兽(Elasticsearch)的那些事儿 -- 数据结构及巧妙算法 内存吞金兽(Elasticsearch)的那 ...

  7. MySQL安装及基本使用教程

      yanzilove win10下安装配置mysql环境 一.下载从https://dev.mysql.com/downloads/mysql/5.1.html#downloads下载zip包,这里 ...

  8. AI编程:如何编写提示词

    这是小卷对AI编程工具学习的第2篇文章,今天讲讲如何编写AI编程的提示词,并结合实际功能需求案例来进行开发 1.编写提示词的技巧 好的提示词应该是:目标清晰明确,具有针对性,能引导模型理解问题 下面是 ...

  9. 让存储绿“翼”盎然,天翼云HBlock入选工信部目录!

    近日,中国电信天翼云的自研产品HBlock凭借"存储资源盘活技术"成功入选<国家工业和信息化领域节能降碳技术装备推荐目录(2024年版)>(以下简称<目录> ...

  10. JavaScript数组(包括上一笔记都是ECMAScript对象),BOM对象,DOM对象,html DOM Enent(事件)

    JavaScript数组(包括上一笔记都是ECMAScript对象),BOM对象,DOM对象,html DOM Enent(事件) 1.Arrary; var ret = new Arrary(1,2 ...