题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1297

分析:如果每条边的边权都是1,那么就相当于对邻接矩阵自乘T次(因为写一下递推式子f[i][j]=∑f[i][k]*f[k][j]等价于矩阵乘法的定义)。但是这题每条边的边权是1~9。

所以可以把每个点i拆成9个点形成链状:i9->i8->i7->i6->i5->i4->i3->i2->i1 (这条链中每条边的长度都为1)

然后对于原图中的 i->j边权为k的边 则可以表示为 i1->jk边权为1的边

然后对于新图的邻接矩阵快速幂自乘就可以了

[BZOJ 1297][SCOI 2009]迷路(矩阵快速幂)的更多相关文章

  1. BZOJ 1297: [SCOI2009]迷路 [矩阵快速幂]

    Description windy在有向图中迷路了. 该有向图有 N 个节点,windy从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1. 现在给出该有向图,你能告诉windy总共有多少种不同 ...

  2. BZOJ 1297 迷路(矩阵快速幂)

    很容易想到记忆化搜索的算法. 令dp[n][T]为到达n点时时间为T的路径条数.则dp[n][T]=sigma(dp[i][T-G[i][n]]); 但是空间复杂度为O(n*T),时间复杂度O(n*n ...

  3. BZOJ1297: [SCOI2009]迷路 矩阵快速幂

    Description windy在有向图中迷路了. 该有向图有 N 个节点,windy从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1. 现在给出该有向图,你能告诉windy总共有多少种不同 ...

  4. BZOJ 2875: [Noi2012]随机数生成器( 矩阵快速幂 )

    矩阵快速幂...+快速乘就OK了 ----------------------------------------------------------------------------------- ...

  5. BZOJ 2326 数学作业(分段矩阵快速幂)

    实际上,对于位数相同的连续段,可以用矩阵快速幂求出最后的ans,那么题目中一共只有18个连续段. 分段矩阵快速幂即可. #include<cstdio> #include<iostr ...

  6. Luogu P4159 [SCOI2009]迷路 矩阵快速幂+精巧转化

    大致就是矩阵快速幂吧.. 这个时候会发现这些边权$\le 9$,然后瞬间想到上回一道题:是不是可以建一堆转移矩阵再建一个$lcm(1,2,3,4,5,6,7,8,9)$的矩阵?...后来发现十分的慢q ...

  7. BZOJ 1009 [HNOI2008]GT考试(矩阵快速幂优化DP+KMP)

    题意: 求长度为n的不含长为m的指定子串的字符串的个数 1s, n<=1e9, m<=50 思路: 长见识了.. 设那个指定子串为s f[i][j]表示长度为i的字符串(其中后j个字符与s ...

  8. BZOJ 2326: [HNOI2011]数学作业( 矩阵快速幂 )

    BZOJ先剧透了是矩阵乘法...这道题显然可以f(x) = f(x-1)*10t+x ,其中t表示x有多少位. 这个递推式可以变成这样的矩阵...(不会用公式编辑器...), 我们把位数相同的一起处理 ...

  9. BZOJ 3231: [Sdoi2008]递归数列( 矩阵快速幂 )

    矩阵乘法裸题..差分一下然后用矩阵乘法+快速幂就可以了. ----------------------------------------------------------------------- ...

随机推荐

  1. Spring 通过XML配置文件以及通过注解形式来AOP 来实现前置,环绕,异常通知,返回后通知,后通知

    本节主要内容: 一.Spring 通过XML配置文件形式来AOP 来实现前置,环绕,异常通知     1. Spring AOP  前置通知 XML配置使用案例     2. Spring AOP   ...

  2. FOJ 1683 纪念SlingShot(矩阵快速幂)

    C - 纪念SlingShot Description 已知 F(n)=3 * F(n-1)+2 * F(n-2)+7 * F(n-3),n>=3,其中F(0)=1,F(1)=3,F(2)=5, ...

  3. POJ 2777 Count Color(线段树之成段更新)

    Count Color Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 33311 Accepted: 10058 Descrip ...

  4. 使用Azure Automation(自动化)定时关闭和启动虚拟机

    1. 概述 作为Windows Azure的用户,使用Azure的过程中,最担心的事情就是还没到月底,预设的费用就快消耗完了(下面两张账单图是我最讨厌看到的).但是仔细分析自己的费用列表,发现绝大部分 ...

  5. MIT jos 6.828 Fall 2014 训练记录(lab 3)

    注:源代码参见我的github: https://github.com/YaoZengzeng/jos Part A : User Environments and Exception Handlin ...

  6. Golang gRPC 示例

    1.安装gRPC runtime go get google.golang.org/grpc 为了自动生成Golang的gRPC代码,需要安装protocal buffers compiler以及对应 ...

  7. Django数据库怎么给字段设置主键

    id = models.IntegerField(primary_key = True) 附: null :缺省设置为false.通常不将其用于字符型字段上,比如CharField,TextField ...

  8. ZOJ 2301 / HDU 1199 Color the Ball 离散化+线段树区间连续最大和

    题意:给你n个球排成一行,初始都为黑色,现在给一些操作(L,R,color),给[L,R]区间内的求染上颜色color,'w'为白,'b'为黑.问最后最长的白色区间的起点和终点的位置. 解法:先离散化 ...

  9. Java虚拟机详解01----初识JVM

    主要内容如下: JVM的概念 JVM发展历史 JVM种类 Java语言规范 JVM规范 一.JVM的概念: JVM: Java Virtual Machine,意为Java虚拟机. 虚拟机: 指通过软 ...

  10. IL查看泛型

    查看泛型的IL 我们在开发中经常用到泛型,下面一起通过IL来查看泛型背后做了那些工作 示例代码 示例代码如下: using System;   namespace MyCollection { pub ...