6.1  分类问题

6.2  假说表示

6.3  判定边界

6.4  代价函数

6.5  简化的成本函数和梯度下降

6.6  高级优化

6.7  多类分类:一个对所有


6.1  分类问题

在分类问题中,我们尝试预测的是结果是否属于某一个类(例如正确或错误)。分类问题的例子有:判断一封电子邮件是否是垃圾邮件;判断一次金融交易是否是欺诈等等。

我们从二元的分类问题开始讨论。

      我们将因变量(dependant variable)可能属于的两个类分别称为负向类(negative class)和 正向类(positive class),

      则因变量

其中0表示负向类,1表示正向类。


6.2  假说表示

回顾在一开始提到的乳腺癌分类问题,我们可以用线性回归的方法求出适合数据的一条直线:

根据线性回归模型我们只能预测连续的值,然而对于分类问题,我们需要输出0或1, 我们可以预测:

当 hθ 大于等于 0.5 时,预测 y=1

当 hθ 小于 0.5 时,     预测 y=0

对于上图所示的数据,这样的一个线性模型似乎能很好地完成分类任务。
假使我们又观测到一个非常大尺寸的恶性肿瘤,将其作为实例加入到我们的训练集中来,这将使得我们获得一条新的直线。

这时,再使用 0.5 作为阀值来预测肿瘤是良性还是恶性便不合适了。可以看出,线性回归模型,因为其预测的值可以超越[0,1]的范围,并不适合解决这样的问题。

我们引入一个新的模型,逻辑回归,该模型的输出变量范围始终在 0 和 1 之间。 逻辑回归模型的假设是:

其中:

X  代表特征向量

g  代表逻辑函数(logistic function)是一个常用的逻辑函数为 S 形函数(Sigmoid function),

公式为:

该函数的图像为:

合起来,我们得到逻辑回归模型的假设: 对模型的理解:

hθ(x)的作用是,对于给定的输入变量,根据选择的参数计算输出变量=1 的可能性

(estimated probablity)即

例如,如果对于给定的 x,通过已经确定的参数计算得出 hθ(x)=0.7,则表示有 70%的几 率 y 为正向类,相应地 y 为负向类的几率为 1-0.7=0.3。


6.3  判定边界

在逻辑回归中,我们预测:

当 hθ 大于等于0.5时,预测 y=1

当 hθ 小于 0.5时,预测 y=0

根据上面绘制出的 S 形函数图像,我们知道当

z=0 时 g(z)=0.5

z>0 时 g(z)>0.5

z<0 时 g(z)<0.5

即:

现在假设我们有一个模型: 并且参数 θ 是向量[-3 1 1]。 则当-3+x1+x2   大于等于 0,即 x1+x2 大于等于 3  时,模型将预测 y=1。

我们可以绘制直线 x1+x2=3,这条线便是我们模型的分界线,将预测为 1 的区域和预测 为 0 的区域分隔开。

假使我们的数据呈现这样的分布情况,怎样的模型才能适合呢?

因为需要用曲线才能分隔 y=0  的区域和 y=1  的区域,我们需要二次方特征: 假设参数

则我们得到的判定边界恰好是圆点在原点且半径为 1 的圆形。 我们可以用非常复杂的模型来适应非常复杂形状的判定边界。


6.4  代价函数

对于线性回归模型,我们定义的代价函数是所有模型误差的平方和。理论上来说,我们也可以对逻辑回归模型沿用这个定义,但是问题在于,当我们将

这意味着我们的代价函数有许多局部最小值,这将影响梯度下降算法寻找全局最小值。

因此我们重新定义逻辑回归的代价函数为:

其中

hθ(x)与 Cost(hθ(x),y)之间的关系如下图所示:

这样构建的 Cost(hθ(x),y)函数的特点是:

当实际的 y=1  且 hθ 也为 1  时误差为 0,当 y=1 但 hθ 不为 1 时误差随着 hθ 的变小而变大;

当实际的 y=0  且 hθ 也为 0  时代价为 0,当 y=0 但 hθ 不为 0 时误差随着 hθ 的变大而变大。

将构建的 Cost(hθ(x),y)简化如下:

带入代价函数得到:

在得到这样一个代价函数以后,我们便可以用梯度下降算法来求得能使代价函数最小的 参数了。算法为:

求导后得到:

注:虽然得到的梯度下降算法表面上看上去与线性回归的梯度下降算法一样,但是这里与线性回归中不同,所以实际上是不一样的

另外,在运行梯度下降算法前,进行特征缩放依旧是非常必要的。

一些梯度下降算法之外的选择: 除了梯度下降算法以外,还有一些常被用来令代价函 数最小的算法,这些算法更加复杂和优越,而且通常不需要人工选择学习率,通常比梯度下降算法要更加快速。这些算法有:共轭梯度(Conjugate Gradient),局部优化法(Broyden fletcher goldfarb shann,BFGS)和有限内存局部优化法(LBFGS) fminunc 是 matlab 和 octave 中都带的一个最小值优化函数,使用时我们需要提供代价函数和每个参数的求导,下面是 octave 中使用 fminunc  函数的代码示例:

function [jVal, gradient] = costFunction(theta)

jVal = [...code to computeJ(theta)...];

gradient = [...code to compute derivative of J(theta)...];

end

options = optimset('GradObj', 'on', 'MaxIter', '100');

initialTheta = zeros(2,1);

[optTheta, functionVal, exitFlag] = fminunc(@costFunction, initialTheta, options);


6.5  简化的成本函数和梯度下降

多类分类问题中,我们的训练集中有多个类(>2),我们无法仅仅用一个二元变量(0 或 1) 来做判断依据。例如我们要预测天气情况分四种类型:晴天、多云、下雨或下雪。

下面是一个多类分类问题可能的情况:

一种解决这类问题的途径是采用一对多(One-vs-All)方法。在一对多方法中,我们将多类分类问题转化成二元分类问题。

为了能实现这样的转变,我们将多个类中的一个类标记为正向类(y=1),然后将其他所有类都标记为负向类,这个模型记作

最后我们得到一系列的模型简记为:

最后,在我们需要做预测时,我们将所有的分类机都运行一遍,然后对每一个输入变量, 都选择最高可能性的输出变量。


6.6  高级优化

6.7  多类分类:一个对所有

斯坦福第六课:逻辑回归(Logistic Regression)的更多相关文章

  1. Coursera公开课笔记: 斯坦福大学机器学习第六课“逻辑回归(Logistic Regression)” 清晰讲解logistic-good!!!!!!

    原文:http://52opencourse.com/125/coursera%E5%85%AC%E5%BC%80%E8%AF%BE%E7%AC%94%E8%AE%B0-%E6%96%AF%E5%9D ...

  2. 机器学习 (三) 逻辑回归 Logistic Regression

    文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人 ...

  3. 机器学习总结之逻辑回归Logistic Regression

    机器学习总结之逻辑回归Logistic Regression 逻辑回归logistic regression,虽然名字是回归,但是实际上它是处理分类问题的算法.简单的说回归问题和分类问题如下: 回归问 ...

  4. 机器学习(四)--------逻辑回归(Logistic Regression)

    逻辑回归(Logistic Regression) 线性回归用来预测,逻辑回归用来分类. 线性回归是拟合函数,逻辑回归是预测函数 逻辑回归就是分类. 分类问题用线性方程是不行的   线性方程拟合的是连 ...

  5. 机器学习入门11 - 逻辑回归 (Logistic Regression)

    原文链接:https://developers.google.com/machine-learning/crash-course/logistic-regression/ 逻辑回归会生成一个介于 0 ...

  6. 机器学习方法(五):逻辑回归Logistic Regression,Softmax Regression

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术.应用感兴趣的同学加入. 前面介绍过线性回归的基本知识, ...

  7. ML 逻辑回归 Logistic Regression

    逻辑回归 Logistic Regression 1 分类 Classification 首先我们来看看使用线性回归来解决分类会出现的问题.下图中,我们加入了一个训练集,产生的新的假设函数使得我们进行 ...

  8. 逻辑回归(Logistic Regression)详解,公式推导及代码实现

    逻辑回归(Logistic Regression) 什么是逻辑回归: 逻辑回归(Logistic Regression)是一种基于概率的模式识别算法,虽然名字中带"回归",但实际上 ...

  9. Ng第六课:逻辑回归(Logistic Regression)

    6.1  分类问题 6.2  假说表示 6.3  判定边界 6.4  代价函数 6.5  简化的成本函数和梯度下降 6.6  高级优化 6.7  多类分类:一个对所有 6.1  分类问题 在分类问题中 ...

随机推荐

  1. Mysql备份迁移——Mysqldump(.NET调用Mysqldump.exe方式)——(解决视图嵌视图报错)

    利用Mysqldump备份和迁移,我想很多人都用过,具体参数不介绍了,这里主要讲.NET调用Mysqldump进行备份和.NET调用Mysql.exe进行导入数据. 这里使用的是5.1版的Mysqld ...

  2. 黑马程序员_JAVA基础知识总结3

    ------- android培训.java培训.期待与您交流! ---------- Java源文件的扩展名是.java,编译之后生成.class的文件.所有的类都有一个共同的继承祖先Object类 ...

  3. 关于Unity中Camera的Aspect

    一直以来对Camera的Aspect和Game窗口的Aspect都是一知半解,某天从一本书中看到了对Camera的API讲解,但是总觉得对Aspect讲解的有问题.于是就认真的思考起了这个问题,还发现 ...

  4. 静态修饰符(关键字static)

    1.Static修饰的方法或变量通常称为类方法和类属性 2.静态方法中不能使用this和super关键字,也不能做为局部变量使用 3.在静态方法中不能访问非静态成员方法和非静态成员变量,但是在非静态成 ...

  5. The listener supports no services解决一例

    The listener supports no services解决一例   Listener动态监听静态监听注册实例 今天做Advacned Replication实验的时候碰到一个问题,启动目标 ...

  6. jQuery基础 -- 如何判断页面元素存在与否

    在传统的Javascript里,当我们对某个页面元素进行某种操作前,最好先判断这个元素是否存在.原因是对一个不存在的元素进行操作是不允许的.例如: document.getElementById(&q ...

  7. NHibernate系列文章三:简单的增删改查询

    摘要 上一篇文章只完成了简单的NHibernate安装.配置和连接数据库.这篇文章介绍怎样实现最简单的数据库读写操作. 1. 重构ISessionFactory生成过程 将生成ISessionFact ...

  8. IOS App Integrate Google Map Problems and Method to solve them

    1. You must get a key in google developer center, and register it in below function in AppDelegate.m ...

  9. jenkins+findbugs

    1)  Jenkins安装findbugs插件 具体安装步骤:在主页面进入系统管理 选择插件管理 在过滤器中找出要安装的插件,并进行安装(Static Analysis Utilities.findb ...

  10. archlinux pacman 常用选项

    pacman -S package_name #安装软件包pacman -R package_name #删除软件包 pacman -Rs package_name #顺便删除软件包相关依赖pacma ...