POJ 1308&&HDU 1272 并查集判断图
Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u
Description
Input
整个文件以两个-1结尾。
Output
Sample Input
6 8 5 3 5 2 6 4
5 6 0 0 8 1 7 3 6 2 8 9 7 5
7 4 7 8 7 6 0 0 3 8 6 8 6 4
5 3 5 6 5 2 0 0 -1 -1
Sample Output
#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn=;
int father[maxn];
bool vis[maxn];
void init(){
for(int i=;i<maxn;i++){
father[i]=i;
vis[i]=false;
}
}
int get_father(int x){
if(father[x]!=x)
father[x]=get_father(father[x]);
return father[x];
}
int main(){
int u,v;
bool flag=true;
init();
while(scanf("%d%d",&u,&v)!=EOF){
if(u==-&&v==-)
break;
if(u==&&v==){ printf("Yes\n");
continue;
}
vis[u]=true;
vis[v]=true;
father[u]=v;
while(scanf("%d%d",&u,&v)!=EOF){
if(u==&&v==)
break;
vis[u]=true;
vis[v]=true;
int t1=get_father(u);
int t2=get_father(v);
if(t1!=t2)
father[t1]=t2;
else
flag=false;
}
int ans;
for(int i=;i<maxn;i++){
if(vis[i]){
ans=get_father(i);
break;
}
}
for(int i=;i<maxn;i++){
if(vis[i]){
if(get_father(i)!=ans){
flag=false;
break;
} }
}
if(flag)
printf("Yes\n");
else
printf("No\n");
flag=true;
init(); }
return ; }
Time Limit:1000MS Memory Limit:10000KB 64bit IO Format:%I64d & %I64u
Description
There is exactly one node, called the root, to which no directed edges point.
Every node except the root has exactly one edge pointing to it.
There is a unique sequence of directed edges from the root to each node.
For example, consider the illustrations below, in which nodes
are represented by circles and edges are represented by lines with
arrowheads. The first two of these are trees, but the last is not.
In
this problem you will be given several descriptions of collections of
nodes connected by directed edges. For each of these you are to
determine if the collection satisfies the definition of a tree or not.
Input
followed by a pair of negative integers. Each test case will consist of a
sequence of edge descriptions followed by a pair of zeroes Each edge
description will consist of a pair of integers; the first integer
identifies the node from which the edge begins, and the second integer
identifies the node to which the edge is directed. Node numbers will
always be greater than zero.
Output
"Case k is not a tree.", where k corresponds to the test case number
(they are sequentially numbered starting with 1).
Sample Input
6 8 5 3 5 2 6 4
5 6 0 0 8 1 7 3 6 2 8 9 7 5
7 4 7 8 7 6 0 0 3 8 6 8 6 4
5 3 5 6 5 2 0 0
-1 -1
Sample Output
Case 1 is a tree.
Case 2 is a tree.
Case 3 is not a tree.
本题和上题几乎一样,只不过这道题判断的时不时一个树。
这里我们需要注意三点
1本题给的虽然是有向图,但是并不影响树的构建,当成无向图就可以了,用并查集合并的时候,代码和上道题是一模一样的 2如果输入的数据只有一组,那么一个点是孤立的节点,他是构不成一个树的
3如果只是输入0 0 ,那么这是一个空树,但是也是一个树,所以我们仍需要默认其为一个树
#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn=;
int father[maxn];
bool vis[maxn];
void init(){
for(int i=;i<maxn;i++){
father[i]=i;
vis[i]=false;
}
}
int get_father(int x){
if(father[x]!=x)
father[x]=get_father(father[x]);
return father[x];
}
int main(){
int u,v;
bool flag=true;
init();
int cnt=;
while(scanf("%d%d",&u,&v)!=EOF){
if(u==-&&v==-)
break;
if(u==&&v==){ printf("Case %d is a tree.\n",cnt++);
continue;
}
vis[u]=true;
vis[v]=true;
father[u]=v;
while(scanf("%d%d",&u,&v)!=EOF){
if(u==&&v==)
break;
vis[u]=true;
vis[v]=true;
int t1=get_father(u);
int t2=get_father(v);
if(t1!=t2)
father[t1]=t2;
else
flag=false;
}
int ans;
int sum=;
for(int i=;i<maxn;i++){
if(vis[i]){
ans=get_father(i);
break;
}
}
for(int i=;i<maxn;i++){
if(vis[i]){
sum++;
if(get_father(i)!=ans){
flag=false;
break;
} }
}
if(flag&&sum!=)
printf("Case %d is a tree.\n",cnt++);
else
printf("Case %d is not a tree.\n",cnt++);
flag=true;
init(); }
return ; }
POJ 1308&&HDU 1272 并查集判断图的更多相关文章
- 小希的迷宫(HDU 1272 并查集判断生成树)
小希的迷宫 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submi ...
- hdu 1116 并查集判断欧拉回路通路
判断一些字符串能首尾相连连在一起 并查集求欧拉回路和通路 Sample Input 3 2 acm ibm 3 acm malform mouse 2 ok ok Sample Output The ...
- PAT甲题题解-1126. Eulerian Path (25)-欧拉回路+并查集判断图的连通性
题目已经告诉如何判断欧拉回路了,剩下的有一点要注意,可能图本身并不连通. 所以这里用并查集来判断图的联通性. #include <iostream> #include <cstdio ...
- POJ 2513 trie树+并查集判断无向图的欧拉路
生无可恋 查RE查了一个多小时.. 原因是我N define的是250500 应该是500500!!!!!!!!! 身败名裂,已无颜面对众人.. 吐槽完了 我们来说思路... 思路: 判有向图能否形成 ...
- 小希的迷宫 HDU - 1272 (并查集)
思路: 当图中的集合(连通子图)个数为1并且边数等于顶点数-1(即改图恰好为一棵生成树)时,输出Yes. 此题的坑:(1) 如果只输入0 0算作一组数据的话答案应该输出Yes (2) 输入数据可能并不 ...
- HDU - 1272 小希的迷宫 并查集判断无向环及连通问题 树的性质
小希的迷宫 上次Gardon的迷宫城堡小希玩了很久(见Problem B),现在她也想设计一个迷宫让Gardon来走.但是她设计迷宫的思路不一样,首先她认为所有的通道都应该是双向连通的,就是说如果有一 ...
- HDU 3926 并查集 图同构简单判断 STL
给出两个图,问你是不是同构的... 直接通过并查集建图,暴力用SET判断下子节点个数就行了. /** @Date : 2017-09-22 16:13:42 * @FileName: HDU 3926 ...
- HDU - 5438 Ponds(拓扑排序删点+并查集判断连通分量)
题目: 给出一个无向图,将图中度数小于等于1的点删掉,并删掉与他相连的点,直到不能在删为止,然后判断图中的各个连通分量,如果这个连通分量里边的点的个数是奇数,就把这些点的权值求和. 思路: 先用拓扑排 ...
- hdu 4514 并查集+树形dp
湫湫系列故事——设计风景线 Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Tot ...
随机推荐
- [bzoj1296][SCOI2009]粉刷匠(泛化背包)
http://www.lydsy.com:808/JudgeOnline/problem.php?id=1296 分析: 首先预处理出每一行的g[0..T]表示这一行刷0..T次,最多得到的正确格子数 ...
- redis学习笔记——(4)
一.概述: 在该系列的前几篇博客中,主要讲述的是与Redis数据类型相关的命令,如String.List.Set.Hashes和Sorted-Set.这些命令都具有一个共同点,即所有的操作都是针对与K ...
- [设计模式] Javascript 之 外观模式
外观模式说明 说明:外观模式是用于由于子系统或程序组成较复杂而提供的一个高层界面接口,使用客户端更容易访问底层的程序或系统接口; 外观模式是我们经常使用遇到的模式,我们经常涉及到的功能,可能需要涉及到 ...
- java数组的增删改查
import java.util.List; import java.util.ArrayList; import java.util.Set; import java.util.HashSet; p ...
- 在Oracle里,表的别名不能用as,列的别名可以用as
列的别名也可以不用as,如:select t.a xxx from table t 在Oracle数据库中,数据表别名是不能加as的,例如: select a.appname from appinfo ...
- OC基础--OC内存管理原则和简单实例
ARC: 由于自己的学习视频太早,Xcode是iOS6版本,新建命令行项目后,系统会默认启动ARC机制,全程Automatic Reference Counting,简单的说,就是代码中自动加入了re ...
- nslog
今天有人问我怎么更好的使用nslog,打包的时候老注释 pch里加下面的代码就好了平时debug的时候打印,release后就不打印了 #ifdef DEBUG#define NSLog(...) N ...
- chrom_input_click
<!doctype html> <html> <head> <meta charset="utf-8"> <title> ...
- Emgu学习之(二)——图像读取、显示、保存
visual Studio Community 2015 工程和源代码:http://pan.baidu.com/s/1o6u5Fdw 内容 在这篇文章中将提到以下内容: 从文件中读取图像 Image ...
- easyui form 方式提交数据
http://ldzyz007.iteye.com/blog/2067540 <form id="ff" method="post"> . ...