The Dirichlet Distribution 狄利克雷分布 (PRML 2.2.1)

Dirichlet分布可以看做是分布之上的分布。如何理解这句话,我们可以先举个例子:假设我们有一个骰子,其有六面,分别为{1,2,3,4,5,6}。现在我们做了10000次投掷的实验,得到的实验结果是六面分别出现了{2000,2000,2000,2000,1000,1000}次,如果用每一面出现的次数与试验总数的比值估计这个面出现的概率,则我们得到六面出现的概率,分别为{0.2,0.2,0.2,0.2,0.1,0.1}。现在,我们还不满足,我们想要做10000次试验,每次试验中我们都投掷骰子10000次。我们想知道,出现这样的情况使得我们认为,骰子六面出现概率为{0.2,0.2,0.2,0.2,0.1,0.1}的概率是多少(说不定下次试验统计得到的概率为{0.1,
0.1, 0.2, 0.2, 0.2, 0.2}这样了)。这样我们就在思考骰子六面出现概率分布这样的分布之上的分布。而这样一个分布就是Dirichlet分布。

首先用上面这一段来点直观印象,然后列一些资料:

维基里面对于狄利克雷分布貌似介绍的挺复杂,不够基础。我找到了一个CMU的PPT:Dirichlet
Distribution, Dirichlet Process and Dirichlet Process Mixture
,找到一篇华盛顿大学的《Introduction
to the Dirichlet Distribution and Related Processes》介绍。

发现CMU那个ppt里面讲到,Beta is the conjugate prior of Binomial,有一种原来如此的感觉。嗯,原来贝塔分布是二项分布的共轭先验分布,那么狄利克雷分布就是多项分布的共轭先验分布。所以要看狄利克雷分布,就要先了解多项分布,然后呢,想要了解狄利克雷之于多元的关系,就要先看贝塔分布和伯努利分布的关系。所以,二项分布、beta分布、以及共轭这三点是理解狄利克雷分布的关键基础知识,这个基础知识记录在这里(PRML2.1整小章介绍了这个)。

下面正式进入狄利克雷分布介绍,首先说一下这个多项分布的参数μ。在伯努利分布里,参数μ就是抛硬币取某一面的概率,因为伯努利分布的状态空间只有{0,1}。但是在多项分布里,因为状态空间有K个取值,因此μ变成了向量μ⃗ =(μ1, …, μk)T。多项分布的likelihood函数形式是∏k=1Kμmkk,因此就像选择伯努利分布的共轭先验贝塔函数时那样,狄利克雷分布的函数形式应该如下:

p(μ|α)∝∏k=1Kμαk−1k  式2.37

上式中,∑kμk=1,α⃗ =(α1, …, αk)T是狄利克雷分布的参数。最后把2.37归一化成为真正的狄利克雷分布:

Dir(μ|α)=Γ(α0)Γ(α1)…Γ(αk)∏k=1Kμαk−1k

其中α0=∑k=1Kαk。这个函数跟贝塔分布有点像(取K=2时就是Beta分布)。跟多项分布也有点像。就像Beta分布那样,狄利克雷分布就是它所对应的后验多项分布的参数μ⃗ 的分布,只不过μ是一个向量,下图是当μ⃗ =(μ1,μ2,μ3)时,即只有三个值时狄利克雷概率密度函数的例子。其中中间那个图的三角形表示一个平放的Simplex,三角形三个顶点分别表示μ⃗ =(1,0,0),μ⃗ =(0,1,0)和μ⃗ =(0,0,1),因此三角形中间部分的任意一个点就是μ⃗ 的一个取值,纵轴就是这个μ⃗ 的Simplex上的概率密度值(PDF)。

对于参数μ⃗ 的估计时,可知
后验=似然*先验 的函数形式如下:

Kμαk+mk−1k

从这个形式可以看出,后验也是狄利克雷分布。类似于贝塔分布归一化后验的方法,我们把这个后验归一化一下,得到:

p(μ|D,α)=Dir(μ|α+m)=Γ(α0+N)Γ(α1+m1)…Γ(αK+mK)∏k=1Kμαk+mk−1k

The Dirichlet Distribution 狄利克雷分布 (PRML 2.2.1)的更多相关文章

  1. (转)Gamma分布,Beta分布,Multinomial多项式分布,Dirichlet狄利克雷分布

    1. Gamma函数 首先我们可以看一下Gamma函数的定义: Gamma的重要性质包括下面几条: 1. 递推公式: 2. 对于正整数n, 有 因此可以说Gamma函数是阶乘的推广. 3.  4.  ...

  2. [Bayes] Multinomials and Dirichlet distribution

    From: https://www.cs.cmu.edu/~scohen/psnlp-lecture6.pdf 不错的PPT,图示很好. 伯努利分布 和 多项式分布 Binomial Distribu ...

  3. Dirichlet Distribution

    Beta分布: 二项式分布(Binomial distribution): 多项式分布: Beta分布: Beta分布是二项式分布的共轭先验(conjugate prior) Dirichlet Di ...

  4. Notes on the Dirichlet Distribution and Dirichlet Process

    Notes on the Dirichlet Distribution and Dirichlet Process In [3]: %matplotlib inline   Note: I wrote ...

  5. 二项分布 , 多项分布, 以及与之对应的beta分布和狄利克雷分布

    1. 二项分布与beta分布对应 2. 多项分布与狄利克雷分布对应 3. 二项分布是什么?n次bernuli试验服从 二项分布 二项分布是N次重复bernuli试验结果的分布. bernuli实验是什 ...

  6. 主题模型(概率潜语义分析PLSA、隐含狄利克雷分布LDA)

    一.pLSA模型 1.朴素贝叶斯的分析 (1)可以胜任许多文本分类问题.(2)无法解决语料中一词多义和多词一义的问题--它更像是词法分析,而非语义分析.(3)如果使用词向量作为文档的特征,一词多义和多 ...

  7. SK-Learn使用NMF(非负矩阵分解)和LDA(隐含狄利克雷分布)进行话题抽取

    英文链接:http://scikit-learn.org/stable/auto_examples/applications/topics_extraction_with_nmf_lda.html 这 ...

  8. 伯努利分布、二项分布、Beta分布、多项分布和Dirichlet分布与他们之间的关系,以及在LDA中的应用

    在看LDA的时候,遇到的数学公式分布有些多,因此在这里总结一下思路. 一.伯努利试验.伯努利过程与伯努利分布 先说一下什么是伯努利试验: 维基百科伯努利试验中: 伯努利试验(Bernoulli tri ...

  9. [综] Latent Dirichlet Allocation(LDA)主题模型算法

    多项分布 http://szjc.math168.com/book/ebookdetail.aspx?cateid=1&&sectionid=983 二项分布和多项分布 http:// ...

随机推荐

  1. 《Linux内核设计与实现》 Chapter4 读书笔记

    <Linux内核设计与实现> Chapter4 读书笔记 调度程序负责决定将哪个进程投入运行,何时运行以及运行多长时间,进程调度程序可看做在可运行态进程之间分配有限的处理器时间资源的内核子 ...

  2. css优化篇

    平时总说如何如何优化,今天就详细的写一下css如何优化,嘿嘿. 首先,CSS的优化工作主要从两个方面着手 网络性能:把CSS写到字节数最少,加快下载速度,自然可以让页面渲染的更快一些 语法性能:同样都 ...

  3. CMD命令下对文件夹进行权限处理 转

    保证自己的磁盘分区格式是NTFS.FAT32是不行的. 一.Cacls.exe命令的使用 这是一个在Windows 2000/XP/Server 2003操作系统下都可以使用的命令,作用是显示或者修改 ...

  4. storm如何保证at least once语义?

    背景 前期收到的问题: 1.在Topology中我们可以指定spout.bolt的并行度,在提交Topology时Storm如何将spout.bolt自动发布到每个服务器并且控制服务的CPU.磁盘等资 ...

  5. 团队项目作业第二项:利用NABCD模型进行竞争性需求分析

    项目需求分析与建议--NABCD模型(王鲁跃负责) N (Need 需求) 对于现在的学生来说,我们认为打字是很重要的.不管在什么方面都需要进行电脑打字,例如文员.QQ.MSN.制作,论文等等,都需要 ...

  6. WebView与JavaScript的交互

    目录: 一.整体思路 二.简单例子实现过程        1.打开项目的asset目录,创建新的文件test.html        2.补充html代码:添加供本地调用的js方法.调用本地方法的js ...

  7. Java泛型中E、T、K、V等的含义

     Java泛型中的标记符含义:  E - Element (在集合中使用,因为集合中存放的是元素) T - Type(Java 类) K - Key(键) V - Value(值) N - Numbe ...

  8. poj1679 kruskal

    判断最小生成树是否唯一.kruskal时记录需要的边,然后枚举删除它们,每次删除时进行kruskal,如果值未变,表明不唯一. #include<stdio.h> #include< ...

  9. Java 缓存技术

    以下仅是对map对方式讨论.没有对点阵图阵讨论.作缓存要做以下2点:  1:清理及更新缓存时机的处理: . 虚拟机内存不足,清理缓存 .. 缓存时间超时,或访问次数超出, 启动线程更新 2:类和方法的 ...

  10. 图解Android - Android GUI 系统 (2) - 窗口管理 (View, Canvas, Window Manager)

    Android 的窗口管理系统 (View, Canvas, WindowManager) 在图解Android - Zygote 和 System Server 启动分析一 文里,我们已经知道And ...