二叉平衡查找树即是一棵树中所有节点的左右子树高度差不超过1的查找树
头文件——————————————————————————————
#ifndef _AVLTREE_H_
#define _AVLTREE_H_
#include <stdlib.h>
#include <iomanip>
#include <iostream> typedef struct AvlNode *Position;
typedef Position AvlTree;
#define Element int
struct AvlNode
{
Element data;
int height;//叶子节点高度定义为0,其父节点为1以此类推
AvlTree left;
AvlTree right;
}; static int Height(AvlTree avl);
void SwapAvlNode(Position *p1, Position *p2);
Position GetNotBalancedNode(AvlTree avl);
void MakeEmpty(AvlTree* pavl);
Position Find(Element x, AvlTree avl);
Position FindMin(AvlTree avl);
Position FindMax(AvlTree avl);
void Insert(Element x, AvlTree* pavl);
void Delete(Element x, AvlTree* pavl);
Element Retrieve(Position p);
void SingleRotateWithLeftLeft(Position *pK2);
void SingleRotateWithRightRight(Position *pK2);
void DoubleRotateWithLeftRight(Position *pK3);
void DoubleRotateWithRightLeft(Position *pK3);
void PrintTree(AvlTree avl, int Depth, int ctrl);
#endif
源文件————————————————————————————————
#include "./AvlTree.h" int Max(int a, int b)
{
if(a <= b)
return b;
return a;
}
void SwapAvlNode(Position *p1, Position *p2)
{
Position tmp = *p1;
*p1 = *p2;
*p2 = tmp;
}
int Abs(int a)
{
if(a < 0) return -a;
return a;
}
static int Height(AvlTree avl)
{
if(NULL == avl)
return -1;
else
return avl->height;
}
Position GetNotBalancedNode(AvlTree avl)
{
if(NULL == avl)
return NULL;
else
{
if(Height(avl->left) - Height(avl->right) == Abs(2))//not balanced
return avl;
else
{
Position res = GetNotBalancedNode(avl->left);
if(NULL != res)//avl->left is not balanced
return res;
else
return GetNotBalancedNode(avl->right);
}
}
}
void MakeEmpty(AvlTree* pavl)
{
if(NULL != (*pavl))
{
MakeEmpty(&((*pavl)->left));
MakeEmpty(&((*pavl)->right));
free(*pavl);
*pavl = NULL;
}
}
Position Find(Element x, AvlTree avl)
{
Position pos = avl;
while(NULL != pos)
{
if(x < Retrieve(pos))
pos = pos->left;
else if(x > Retrieve(pos))
pos = pos->right;
else
break;
}
return pos;
}
Position FindMin(AvlTree avl)
{
while(NULL != avl && NULL != avl->left)
avl = avl->left;
return avl;
}
Position FindMax(AvlTree avl)
{
while(NULL != avl && NULL != avl->right)
avl = avl->right;
return avl;
}
void Insert(Element x, AvlTree* pavl)
{
if(NULL == (*pavl))
{
Position tmp = (Position)malloc(sizeof(struct AvlNode));
if(NULL == tmp)
return ;
tmp->data = x;
tmp->height = 0;
tmp->left = tmp->right = NULL;
*pavl = tmp;
}
else
{
if(x < Retrieve(*pavl))//在*pavl的左儿子上插入
{
Insert(x, &((*pavl)->left));
if(Height((*pavl)->left) - Height((*pavl)->right) == 2)//不平衡
{
if(x < Retrieve((*pavl)->left))//左儿子的左子树
SingleRotateWithLeftLeft(pavl);
else//左儿子的右子树
DoubleRotateWithLeftRight(pavl);
}
}
else if(x > Retrieve(*pavl))//在*pavl的右儿子上插入
{
Insert(x, &((*pavl)->right));
if(Height((*pavl)->right) - Height((*pavl)->left) == 2)//不平衡
{
if(x > Retrieve((*pavl)->right))//右儿子的右子树
SingleRotateWithRightRight(pavl);
else//右儿子的左子树
DoubleRotateWithRightLeft(pavl);
}
}
}
(*pavl)->height = Max(Height((*pavl)->left), Height((*pavl)->right)) + 1;
}
void Delete(Element x, AvlTree* pavl)
{
if(NULL == *pavl)
return ;
if(x < Retrieve((*pavl)))//go left
Delete(x, &((*pavl)->left));
else if(x > Retrieve((*pavl)))//go right
Delete(x, &((*pavl)->right));
else if(NULL != (*pavl)->left && NULL != (*pavl)->right)//*pavl has two children
{
//利用右子树的最小值tmp->data来替代被删除的节点上的值x,然后在右子树上递归的删除值tmp->data
Position tmp = FindMin((*pavl)->right);
(*pavl)->data = tmp->data;
Delete(tmp->data, &((*pavl)->right));
}
else//*pavl has none or one child
{
Position tmp = *pavl;
if(NULL == (*pavl)->left)//*pavl has right child
*pavl = (*pavl)->right;
else if(NULL == (*pavl)->right)//*pavl has left child
*pavl = (*pavl)->left;
free(tmp);
}
if(NULL != *pavl)//最后更新*pavl节点上的高度
{
(*pavl)->height = Max(Height((*pavl)->left), Height((*pavl)->right)) + 1;
if(2 == Height((*pavl)->left) - Height((*pavl)->right))//not balanced
{
if(NULL == (*pavl)->left->right)
SingleRotateWithLeftLeft(pavl);
else
DoubleRotateWithLeftRight(pavl);
}
else if(2 == Height((*pavl)->right) - Height((*pavl)->left))//not balance
{
if(NULL == (*pavl)->right->left)
SingleRotateWithRightRight(pavl);
else
DoubleRotateWithRightLeft(pavl);
}
}
}
Element Retrieve(Position p)
{
return p->data;
}
void SingleRotateWithLeftLeft(Position *pK2)
{
Position k2 = *pK2;
Position k1 = k2->left;
k2->left = k1->right;
k1->right = k2;
k1->height = Max(Height(k1->left), Height(k2)) + 1;
k2->height = Max(Height(k2->left), Height(k2->right)) + 1;
*pK2 = k1;
}
void SingleRotateWithRightRight(Position *pK2)
{
Position k2 = *pK2;
Position k1 = k2->right;
k2->right = k1->left;
k1->left = k2;
k1->height = Max(Height(k2), Height(k1->right)) + 1;
k2->height = Max(Height(k2->left), Height(k2->right)) + 1;
*pK2 = k1;
}
void DoubleRotateWithLeftRight(Position *pK3)
{
SingleRotateWithRightRight(&((*pK3)->left));
SingleRotateWithLeftLeft(pK3);
}
void DoubleRotateWithRightLeft(Position *pK3)
{
SingleRotateWithLeftLeft(&((*pK3)->right));
SingleRotateWithRightRight(pK3);
}
void PrintTree(AvlTree avl, int Depth, int ctrl)//ctrl:0=root 1=left 2=right
{ if(NULL != avl)
{
std::cout<<std::setw(Depth);
if(0 == ctrl)
std::cout<<"rt:";
else if(1 == ctrl)
std::cout<<"l";
else if(2 == ctrl)
std::cout<<"r";
std::cout<<avl->data<<std::endl;
PrintTree(avl->left, Depth+3, 1);
PrintTree(avl->right, Depth+3, 2);
}
}

  

二叉平衡查找树AvlTree(C实现)的更多相关文章

  1. 数据结构:JAVA_二叉数查找树基本实现(中)

    数据结构:二叉数查找树基本实现(JAVA语言版) 1.写在前面 二叉查找树得以广泛应用的一个重要原因是它能保持键的有序性,因此我们可以把它作为实现有序符号表API中的众多方法的基础. 也就是说我们构建 ...

  2. 数据结构:JAVA_二叉数查找树基本实现(上)

    数据结构:二叉数查找树基本实现(JAVA语言版) 1.写在前面 二叉查找树是一种能将链表插入的灵活性与有序数组查找的高效性结合在一起的一种数据结构. ..... 2.代码分解 2.1 对节点的结构定义 ...

  3. 树-二叉搜索树-AVL树

    树-二叉搜索树-AVL树 树 树的基本概念 节点的度:节点的儿子数 树的度:Max{节点的度} 节点的高度:节点到各叶节点的最大路径长度 树的高度:根节点的高度 节点的深度(层数):根节点到该节点的路 ...

  4. 浅谈算法和数据结构: 七 二叉查找树 八 平衡查找树之2-3树 九 平衡查找树之红黑树 十 平衡查找树之B树

    http://www.cnblogs.com/yangecnu/p/Introduce-Binary-Search-Tree.html 前文介绍了符号表的两种实现,无序链表和有序数组,无序链表在插入的 ...

  5. 剑指offer-第四章解决面试题思路(二叉收索树和双向链表)

    题目:输入一个二叉收索树,将二叉搜索树转换成排序的双向链表.要求不能创建节点,只能将链表中的指针进行改变. 将复杂的问题简单化:思路:二叉收索树,本身是一个排序结构,中序遍历二叉收索树就可以得到一组排 ...

  6. 高度平衡的二叉搜索树(AVL树)

    AVL树的基本概念 AVL树是一种高度平衡的(height balanced)二叉搜索树:对每一个结点x,x的左子树与右子树的高度差(平衡因子)至多为1. 有人也许要问:为什么要有AVL树呢?它有什么 ...

  7. 数据结构-查找-二叉排序查找(平衡二叉树,B树,B+树概念)

    0.为什么需要二叉排序树 1)数组存储方式: 优点:通过下标访问元素,速度快,对于有序数组,可以通过二分查找提高检索效率: 缺点:如果检索具体某个值,或者插入值(按一定顺序)会整体移动,效率较低: 2 ...

  8. (4) 二叉平衡树, AVL树

    1.为什么要有平衡二叉树? 上一节我们讲了一般的二叉查找树, 其期望深度为O(log2n), 其各操作的时间复杂度O(log2n)同时也是由此决定的.但是在某些情况下(如在插入的序列是有序的时候), ...

  9. 浅谈算法和数据结构: 十 平衡查找树之B树

    前面讲解了平衡查找树中的2-3树以及其实现红黑树.2-3树种,一个节点最多有2个key,而红黑树则使用染色的方式来标识这两个key. 维基百科对B树的定义为“在计算机科学中,B树(B-tree)是一种 ...

随机推荐

  1. python继承

    Python继承 继承实例: 父类和子类的关系: 继承树: 没有父类就继承object类,不要忘记调用super().__init__来初始化父类 代码: class Person(object): ...

  2. Windows Server 安装 BitLocker

    打开PowerShell(管理员): C:\> Install-WindowsFeature BitLocker -Restart 安装好后,系统会自动重新启动. Windows Server ...

  3. spring源码 — 三、AOP代理生成

    AOP代理生成 AOP就是面向切面编程,主要作用就是抽取公共代码,无侵入的增强现有类的功能.从一个简单的spring AOP配置开始: <?xml version="1.0" ...

  4. 手机APP和WAP版的区别

    一.APP 1.APP安装后可以在手机桌面显示 2.APP可以调用系统硬件如:摄像头,拨号.定位.打印等等. 3.APP可以调用其它APP,比如支付宝.微信等等. 4.APP可以存在系统服务中,可以有 ...

  5. 使用ThreadPool代替Thread

    线程的空间开销 线程内核对象.包含上下文信息.32位系统占用700字节 线程环境块.包括线程的异常处理链.32位系统占用4KB 用户模式栈.保存方法的参数.局部变量和返回值 内核模式栈.调用操作系统的 ...

  6. MAC下的命令操作

    打印环境变量:echo $PATH设置环境变量:export PATH=$PATH:/usr/local/git/bin应用:在git-scm下载git2.0.1版本,图形安装后,直接在终端敲giv ...

  7. http 请求类

    1.httpclient请求类 代理demo:http://hc.apache.org/httpcomponents-client-4.3.x/httpclient/examples/org/apac ...

  8. JAVA生产者消费者的实现

    春节回了趟老家,又体验了一次流水席,由于桌席多,导致上菜慢,于是在等待间,总结了一下出菜流程的几个特点: 1.有多个灶台,多个灶台都在同时做菜出来. 2.做出来的菜,会有专人用一个托盘端出来,每次端出 ...

  9. pgpgin|pgpgout|pswpin|pswpout意义与差异

    引用来自: http://ssms.cs2c.com.cn/otrs/pc.pl?Action=PublicFAQZoom;ItemID=11741 文章主要意思是: 1. page in/out操作 ...

  10. Quartz 2D绘制简单图形

    在Quartz 2D中,绘图是通过图形上下文进行绘制的,以下绘制几个简单的图形 首先先创建一个QuartzView.swift文件继承自UIView,然后实现drawRect方法: import UI ...