Scala Collection简介
[comment]: # Scala Collection简介
Traversable vs Iterable
Traversable, Iterable 都是trait。
Iterable 继承 Traversable。
Traversable: 支持foreach.
Iterable: 支持Interator方法。
Immutable vs mutable
Scala的Collection有Immutable和mutable两个大家族。
Immutable: 不可变。初始化后不会发生变化。scala的默认collections。性能更好。
Mutable: 可变。初始化后,可以发生变化。在多线程的访问时,会使用到锁。
可以定义event,来监视数值的变化。
// Immutable vs mutable
println("--- Immutable vs mutable ---")
val listImm = 1 to 5
println("Immutable list: cannot do: listImm(0) = 100")
println("Immutable list: " + listImm)
val listMutable = scala.collection.mutable.MutableList[Int](1,2,3,4,5)
listMutable(0) = 100
println("Mutable list: " + listMutable)
输出:
--- Immutable vs mutable ---
Immutable list: cannot do: listImm(0) = 100
Immutable list: Range(1, 2, 3, 4, 5)
Mutable list: MutableList(100, 2, 3, 4, 5)
Seq vs Set vs Map
Seq, Set, Map都是trait。
Seq: 对象可以重复。
Set: 对象不能重复。
Map: 是一个key-value实现,key不能重复。
LinearSeq vs IndexedSeq
LinearSeq, IndexedSeq都是trait。
LinearSeq: 提供高效head and tail的分割.
IndexedSeq: 提供高效的随机访问。
// Support head and tail
println("--- head and tail ---")
val list1 = Seq(1, 2, 3)
println(list1)
println("head and tail: split head and tail.")
list1 match {
case h::t => println("head: " + h + "\ntail: " + t)
}
输出:
--- head and tail ---
List(1, 2, 3)
head and tail: split head and tail.
head: 1
tail: List(2, 3)
TreeSet vs HashSet vs BitSet
TreeSet, HashSet, BitSet都是class。
TreeSet: 一个树的Set实现。通过值的大小判断,需要一个implicit Ordering的实现。
HashSet: 一个Set实现, 使用Hash值来确定对象的唯一性。
BitSet: 一个只存储Long的Set实现,返回boolean值。用于管理大量的标志位。
// BitSet
println("--- BitSet ---")
println("BitSet: Used to store and access a large amount of flags.")
val bitSet = scala.collection.mutable.BitSet(1,3,4)
bitSet.remove(4)
bitSet.add(5)
println(bitSet)
for(i <- (1 to 5)) println("BitSet: " + i + ": " + bitSet(i))
输出:
--- BitSet ---
BitSet: Used to store and access a large amount of flags.
BitSet(1, 3, 5)
BitSet: 1: true
BitSet: 2: false
BitSet: 3: true
BitSet: 4: false
BitSet: 5: true
TreeMaps vs HashMaps
TreeMaps, HashMaps都是class。
TreeMaps: 一个Tree的Map实现。
HashMaps: 一个Hash key的Map实现。
Vector vs List vs Stream
Vector, List, Stream都是immutable。
Vector: 对于随机访问性能最好。推荐使用。
List: 对于head/tail的访问性能最好。
Stream: lazy估值,主要用于无限数列(infinite sequences)。
// Stream
println("--- Stream ---")
val fibs: Stream[Int] = {
def f(a: Int, b: Int): Stream[Int] = a #:: f(b, a + b)
f(0, 1)
}
println("Stream: is lazy: " + fibs)
fibs(5)
println("Stream: after get 5: " + fibs)
println("--- ")
println("Stream: an infinite stream of incrementing numbers starting from 1 ")
println(List("a", "b", "c") zip (Stream from 1))
输出:
--- Stream ---
Stream: is lazy: Stream(0, ?)
Stream: after get 5: Stream(0, 1, 1, 2, 3, 5, ?)
---
Stream: an infinite stream of incrementing numbers starting from 1
List((a,1), (b,2), (c,3))
Views
Views类似于数据库的view,lasy,性能很好。
map vs zip vs drop/take vs filter vs group vs sliding
map 每个元素到一个函数,把所有函数的结果组成一个新的collection
println("Map: " + listMap + " to: " + listMap.map(x => x * x))
println(listMap map (x => x * x))
输出:
--- map ---
Map: Range(1, 2, 3, 4, 5) to: Vector(1, 4, 9, 16, 25)
Vector(1, 4, 9, 16, 25)
filter:生成一个条件过滤后的Range
// filter
println("--- filter ---")
val listFilter = (1 to 10)
println("filter: " + listFilter + " to: " + listFilter.filter(x => x % 2 == 0))
println(listFilter filter (x => x % 2 == 0))
输出:
--- filter ---
filter: Range(1, 2, 3, 4, 5, 6, 7, 8, 9, 10) to: Vector(2, 4, 6, 8, 10)
Vector(2, 4, 6, 8, 10)
drop & filter:从当前的List中选取一段,生成一个Range
// drop and take
println("--- drop and take ---")
val listTake = (1 to 10)
println("take: " + listTake + " to: " + listTake.drop(5).take(3))
println(listTake drop(5) take(3))
输出:
--- drop and take ---
take: Range(1, 2, 3, 4, 5, 6, 7, 8, 9, 10) to: Range(6, 7, 8)
Range(6, 7, 8)
zip: 将两个List做列合并。
// zip
println("--- zip ---")
val listZip1 = (1 to 5)
val listZip2 = List("A", "B", "C", "D", "E")
println("Zip: " + listZip1 + " and " + listZip1 + " to: " + listZip1.zip(listZip2))
println(listZip1 zip listZip2)
输出:
--- zip ---
Zip: Range(1, 2, 3, 4, 5) and Range(1, 2, 3, 4, 5) to: Vector((1,A), (2,B), (3,C), (4,D), (5,E))
Vector((1,A), (2,B), (3,C), (4,D), (5,E))
grouped: 将collection按照指定的size组合成多个Vector,返回这个List的iterator。
// grouped
println("--- grouped ---")
val listgroup = (1 to 10)
val listgroupIterator = listgroup.grouped(3)
println("grouped: " + listgroup + " with size 3 to: " + listgroupIterator)
listgroupIterator foreach println
输出:
--- grouped ---
grouped: Range(1, 2, 3, 4, 5, 6, 7, 8, 9, 10) with size 3 to: non-empty iterator
Vector(1, 2, 3)
Vector(4, 5, 6)
Vector(7, 8, 9)
Vector(10)
sliding: 将collection按照指定的size组合成一个滑动的块,返回这个块的iterator。
// sliding
println("--- sliding ---")
val listSliding = (2 to 10 by 2)
val listSlidingIterator = listSliding.sliding(3)
println("sliding: " + listSliding + " with size 3 to: " + listSlidingIterator)
listSlidingIterator foreach println
println("----")
println("sliding: tails")
listSliding.tails foreach println
输出:
--- sliding ---
sliding: Vector(2, 4, 6, 8, 10) with size 3 to: non-empty iterator
Vector(2, 4, 6)
Vector(4, 6, 8)
Vector(6, 8, 10)
----
sliding: tails
Vector(2, 4, 6, 8, 10)
Vector(4, 6, 8, 10)
Vector(6, 8, 10)
Vector(8, 10)
Vector(10)
Vector()
reduce vs reduceLeft vs reduceRigh vs fold vs foldLeft vs foldRight vs scan vs scanLeft vs scanRight
都适用于cumulate计算。
reduce, reduceLeft, reduceRight: 计算一个单独的累计结果。
fold, foldLeft, foldRight: 计算一个单独的累计结果,带一个起始值。
scan, scanLeft, scanRight: 得到的是一个List。List的长度和以前一样,分别是对应的单步累计结果。有一个起始种子。
reduce, fold, scan: 用于并行计算。
reduceLeft, foldLeft, scanLeft: 从前到后线性计算。
reduceRight, foldRight, scanRight: 从后到前线性计算。
foldLeft是线性计算。
// fold & reduce & scan
println("--- fold & reduce & scan ---")
val listAdd = List(1,2,3,4,5)
def addOp(a: Int, b: Int): Int = {
println(a + ":" + b)
a + b
}
println("--- reduce")
println("reduce: " + listAdd + " to: " + listAdd.par.reduce(addOp(_, _)))
println("--- reduceLeft")
println("reduceLeft: " + listAdd + " to: " + listAdd.reduceLeft(addOp(_, _)))
println("--- reduceRight")
println("reduceRight: " + listAdd + " to: " + listAdd.reduceRight(addOp(_, _)))
输出:
--- fold & reduce & scan ---
--- reduce
1:2
4:5
3:9
3:12
reduce: List(1, 2, 3, 4, 5) to: 15
--- reduceLeft
1:2
3:3
6:4
10:5
reduceLeft: List(1, 2, 3, 4, 5) to: 15
--- reduceRight
4:5
3:9
2:12
1:14
reduceRight: List(1, 2, 3, 4, 5) to: 15
println("--- fold")
println("fold: " + listAdd + " to: " + listAdd.par.fold(100)(addOp(_, _)))
println("--- foldLeft")
println("foldLeft: " + listAdd + " to: " + listAdd.foldLeft(100)(addOp(_, _)))
println("--- foldRight")
println("foldRight: " + listAdd + " to: " + listAdd.foldRight(100)(addOp(_, _)))
输出:
--- fold
100:1
100:2
100:5
100:3
100:4
101:102
104:105
103:209
203:312
fold: List(1, 2, 3, 4, 5) to: 515
--- foldLeft
100:1
101:2
103:3
106:4
110:5
foldLeft: List(1, 2, 3, 4, 5) to: 115
--- foldRight
5:100
4:105
3:109
2:112
1:114
foldRight: List(1, 2, 3, 4, 5) to: 115
println("--- scan")
println("scan: " + listAdd + " to: " + listAdd.par.scan(100)(addOp(_, _)))
println("--- scanLeft")
println("scanLeft: " + listAdd + " to: " + listAdd.scanLeft(100)(addOp(_, _)))
println("--- scanRight")
println("scanRight: " + listAdd + " to: " + listAdd.scanRight(100)(addOp(_, _)))
输出:
--- scan
4:5
1:2
3:4
3:9
3:3
3:7
3:12
100:1
3:3
1:2
10:5
6:4
scan: List(1, 2, 3, 4, 5) to: ParVector(100, 101, 3, 6, 10, 15)
--- scanLeft
100:1
101:2
103:3
106:4
110:5
scanLeft: List(1, 2, 3, 4, 5) to: List(100, 101, 103, 106, 110, 115)
--- scanRight
5:100
4:105
3:109
2:112
1:114
scanRight: List(1, 2, 3, 4, 5) to: List(115, 114, 112, 109, 105, 100)
参照
- Scala in Depth by ScalaJoshua D. Suereth
- Community-driven documentation for Scala
- Collection Overview
Scala Collection简介的更多相关文章
- spark1.5 scala.collection.mutable.WrappedArray$ofRef cannot be cast to ...解决办法
下面是我在spark user list的求助贴,很快就得到了正确回答,有遇到问题的同学解决不了也可以去上面提问. I can use it under spark1.4.1,but error on ...
- idea中使用scala运行spark出现Exception in thread "main" java.lang.NoClassDefFoundError: scala/collection/GenTraversableOnce$class
idea中使用scala运行spark出现: Exception in thread "main" java.lang.NoClassDefFoundError: scala/co ...
- spark提示Caused by: java.lang.ClassCastException: scala.collection.mutable.WrappedArray$ofRef cannot be cast to [Lscala.collection.immutable.Map;
spark提示Caused by: java.lang.ClassCastException: scala.collection.mutable.WrappedArray$ofRef cannot b ...
- scala语言简介及其环境安装
scala语言简介及其环境安装 简介: 1.运行在JVM 上,兼容java语言 Scala的代码,都需要经过编译为字节码,然后交由Java虚拟机来运行.所以Scala和Java是可以无缝互操作的.Sc ...
- Apache Spark Exception in thread “main” java.lang.NoClassDefFoundError: scala/collection/GenTraversableOnce$class
问题: 今天用Maven搭建了一个Spark的Scala项目,运行后遇到下面异常: Apache Spark Exception in thread “main” java.lang.NoClassD ...
- Scala语言简介和开发环境配置
Scala语言的简介和开发环境搭建 Scala是一门结合了面向对象特征和函数式编程特征的语言,它是一个创新的编程语言产品.Scala可以做脚本(就像shell脚本一样),可以做服务端编程语言,可以写数 ...
- 机器学习的Spark与Scala开发简介
一.机器学习常用开发软件:Spark.Scala 1. Spark简介: MLlib包含的库文件有: 分类 降维 回归 聚类 推荐系统 自然语言处理 在线学习 统计学习方法:偏向理论性,数理统计的方 ...
- Scala Collection Method
接收一元函数 map 转换元素,主要应用于不可变集合 (1 to 10).map(i => i * i) (1 to 10).flatMap(i => (1 to i).map(j =&g ...
- Scala学习——简介
一.Scala简介 Scala 是 Scalable Language 的简写,是一门多范式的编程语言,设计初衷是实现可伸缩的语言并集成面向对象编程和函数式编程的各种特性. 二.Scala 环境搭建 ...
随机推荐
- windows下使用vim+ctags+taglist
最近在公司的同事指导下,学会使用这个东西编写代码,效率提高了不少.所以记录下来,方便大家使用. 1. 下载gvim74.exe文件,并安装.注意一般安装的路径中不要存在空格 2. 下载taglist_ ...
- OpenSSL Command-Line HOWTO
OpenSSL Command-Line HOWTO The openssl application that ships with the OpenSSL libraries can perform ...
- fast-framework – 基于 JDK 8 实现的 Java Web MVC 框架
摘要: 原创出处:www.bysocket.com 泥瓦匠BYSocket 希望转载,保留摘要,谢谢! fast-framework 轻量级 Java Web 框架 – https://github. ...
- 【Xamarin报错】libpng warning : iCCP: Not recognizing known sRGB profile that has been edited
报错: Xamarin Android 编译时发生以下错误: libpng warning : iCCP: Not recognizing known sRGB profile that has be ...
- 验证 Xcode 是否来自正规渠道
由于最近的 Xcode Ghost 事件的发生,所以我们有必要在安装完 Xcode 时验证其是否来自正规渠道. 在终端系统上运行以下命令启用检测: spctl --assess --verbose ...
- ruby 中文字符to_json后乱码(unicode)
今天遇到一个中文to_json问题 text = "第1章 青豆 不要被外表骗了" text.to_json => "\"\\u7b2c1\\u7ae0 ...
- ios auto layout demystified (二)
Constraints Constraint Types Layout constraints (NSLayoutConstraint class, public)—这些规则指定了view的几何学.他 ...
- AssetBundle系列——游戏资源打包(一)
将本地资源打包,然后放到资源服务器上供游戏客户端下载或更新.服务器上包含以下资源列表:(1)游戏内容资源assetbundle(2)资源维护列表,包含每个资源的名字(完整路径名)和对应的版本号[资源名 ...
- windows下面go语言环境搭建
步骤一:golang下载 下载地址是:http://www.golangtc.com/download 下载完成之后解压缩,放到你的c:/根目录下面.然后配置一下环境变量! 环境变量配置如下: 1.新 ...
- 网络通信分享(二):外网ip和内网ip
一.内网ip包括两类: 1:tcp/ip协议中,专门保留了三个IP地址区域作为私有地址,其地址范围如下: 10.0.0.0/8:10.0.0.0-10.255.255.255 172.16.0.0/ ...