Scala Collection简介
[comment]: # Scala Collection简介
Traversable vs Iterable
Traversable, Iterable 都是trait。
Iterable 继承 Traversable。
Traversable: 支持foreach.
Iterable: 支持Interator方法。
Immutable vs mutable
Scala的Collection有Immutable和mutable两个大家族。
Immutable: 不可变。初始化后不会发生变化。scala的默认collections。性能更好。
Mutable: 可变。初始化后,可以发生变化。在多线程的访问时,会使用到锁。
可以定义event,来监视数值的变化。
// Immutable vs mutable
println("--- Immutable vs mutable ---")
val listImm = 1 to 5
println("Immutable list: cannot do: listImm(0) = 100")
println("Immutable list: " + listImm)
val listMutable = scala.collection.mutable.MutableList[Int](1,2,3,4,5)
listMutable(0) = 100
println("Mutable list: " + listMutable)
输出:
--- Immutable vs mutable ---
Immutable list: cannot do: listImm(0) = 100
Immutable list: Range(1, 2, 3, 4, 5)
Mutable list: MutableList(100, 2, 3, 4, 5)
Seq vs Set vs Map
Seq, Set, Map都是trait。
Seq: 对象可以重复。
Set: 对象不能重复。
Map: 是一个key-value实现,key不能重复。
LinearSeq vs IndexedSeq
LinearSeq, IndexedSeq都是trait。
LinearSeq: 提供高效head and tail的分割.
IndexedSeq: 提供高效的随机访问。
// Support head and tail
println("--- head and tail ---")
val list1 = Seq(1, 2, 3)
println(list1)
println("head and tail: split head and tail.")
list1 match {
case h::t => println("head: " + h + "\ntail: " + t)
}
输出:
--- head and tail ---
List(1, 2, 3)
head and tail: split head and tail.
head: 1
tail: List(2, 3)
TreeSet vs HashSet vs BitSet
TreeSet, HashSet, BitSet都是class。
TreeSet: 一个树的Set实现。通过值的大小判断,需要一个implicit Ordering的实现。
HashSet: 一个Set实现, 使用Hash值来确定对象的唯一性。
BitSet: 一个只存储Long的Set实现,返回boolean值。用于管理大量的标志位。
// BitSet
println("--- BitSet ---")
println("BitSet: Used to store and access a large amount of flags.")
val bitSet = scala.collection.mutable.BitSet(1,3,4)
bitSet.remove(4)
bitSet.add(5)
println(bitSet)
for(i <- (1 to 5)) println("BitSet: " + i + ": " + bitSet(i))
输出:
--- BitSet ---
BitSet: Used to store and access a large amount of flags.
BitSet(1, 3, 5)
BitSet: 1: true
BitSet: 2: false
BitSet: 3: true
BitSet: 4: false
BitSet: 5: true
TreeMaps vs HashMaps
TreeMaps, HashMaps都是class。
TreeMaps: 一个Tree的Map实现。
HashMaps: 一个Hash key的Map实现。
Vector vs List vs Stream
Vector, List, Stream都是immutable。
Vector: 对于随机访问性能最好。推荐使用。
List: 对于head/tail的访问性能最好。
Stream: lazy估值,主要用于无限数列(infinite sequences)。
// Stream
println("--- Stream ---")
val fibs: Stream[Int] = {
def f(a: Int, b: Int): Stream[Int] = a #:: f(b, a + b)
f(0, 1)
}
println("Stream: is lazy: " + fibs)
fibs(5)
println("Stream: after get 5: " + fibs)
println("--- ")
println("Stream: an infinite stream of incrementing numbers starting from 1 ")
println(List("a", "b", "c") zip (Stream from 1))
输出:
--- Stream ---
Stream: is lazy: Stream(0, ?)
Stream: after get 5: Stream(0, 1, 1, 2, 3, 5, ?)
---
Stream: an infinite stream of incrementing numbers starting from 1
List((a,1), (b,2), (c,3))
Views
Views类似于数据库的view,lasy,性能很好。
map vs zip vs drop/take vs filter vs group vs sliding
map 每个元素到一个函数,把所有函数的结果组成一个新的collection
println("Map: " + listMap + " to: " + listMap.map(x => x * x))
println(listMap map (x => x * x))
输出:
--- map ---
Map: Range(1, 2, 3, 4, 5) to: Vector(1, 4, 9, 16, 25)
Vector(1, 4, 9, 16, 25)
filter:生成一个条件过滤后的Range
// filter
println("--- filter ---")
val listFilter = (1 to 10)
println("filter: " + listFilter + " to: " + listFilter.filter(x => x % 2 == 0))
println(listFilter filter (x => x % 2 == 0))
输出:
--- filter ---
filter: Range(1, 2, 3, 4, 5, 6, 7, 8, 9, 10) to: Vector(2, 4, 6, 8, 10)
Vector(2, 4, 6, 8, 10)
drop & filter:从当前的List中选取一段,生成一个Range
// drop and take
println("--- drop and take ---")
val listTake = (1 to 10)
println("take: " + listTake + " to: " + listTake.drop(5).take(3))
println(listTake drop(5) take(3))
输出:
--- drop and take ---
take: Range(1, 2, 3, 4, 5, 6, 7, 8, 9, 10) to: Range(6, 7, 8)
Range(6, 7, 8)
zip: 将两个List做列合并。
// zip
println("--- zip ---")
val listZip1 = (1 to 5)
val listZip2 = List("A", "B", "C", "D", "E")
println("Zip: " + listZip1 + " and " + listZip1 + " to: " + listZip1.zip(listZip2))
println(listZip1 zip listZip2)
输出:
--- zip ---
Zip: Range(1, 2, 3, 4, 5) and Range(1, 2, 3, 4, 5) to: Vector((1,A), (2,B), (3,C), (4,D), (5,E))
Vector((1,A), (2,B), (3,C), (4,D), (5,E))
grouped: 将collection按照指定的size组合成多个Vector,返回这个List的iterator。
// grouped
println("--- grouped ---")
val listgroup = (1 to 10)
val listgroupIterator = listgroup.grouped(3)
println("grouped: " + listgroup + " with size 3 to: " + listgroupIterator)
listgroupIterator foreach println
输出:
--- grouped ---
grouped: Range(1, 2, 3, 4, 5, 6, 7, 8, 9, 10) with size 3 to: non-empty iterator
Vector(1, 2, 3)
Vector(4, 5, 6)
Vector(7, 8, 9)
Vector(10)
sliding: 将collection按照指定的size组合成一个滑动的块,返回这个块的iterator。
// sliding
println("--- sliding ---")
val listSliding = (2 to 10 by 2)
val listSlidingIterator = listSliding.sliding(3)
println("sliding: " + listSliding + " with size 3 to: " + listSlidingIterator)
listSlidingIterator foreach println
println("----")
println("sliding: tails")
listSliding.tails foreach println
输出:
--- sliding ---
sliding: Vector(2, 4, 6, 8, 10) with size 3 to: non-empty iterator
Vector(2, 4, 6)
Vector(4, 6, 8)
Vector(6, 8, 10)
----
sliding: tails
Vector(2, 4, 6, 8, 10)
Vector(4, 6, 8, 10)
Vector(6, 8, 10)
Vector(8, 10)
Vector(10)
Vector()
reduce vs reduceLeft vs reduceRigh vs fold vs foldLeft vs foldRight vs scan vs scanLeft vs scanRight
都适用于cumulate计算。
reduce, reduceLeft, reduceRight: 计算一个单独的累计结果。
fold, foldLeft, foldRight: 计算一个单独的累计结果,带一个起始值。
scan, scanLeft, scanRight: 得到的是一个List。List的长度和以前一样,分别是对应的单步累计结果。有一个起始种子。
reduce, fold, scan: 用于并行计算。
reduceLeft, foldLeft, scanLeft: 从前到后线性计算。
reduceRight, foldRight, scanRight: 从后到前线性计算。
foldLeft是线性计算。
// fold & reduce & scan
println("--- fold & reduce & scan ---")
val listAdd = List(1,2,3,4,5)
def addOp(a: Int, b: Int): Int = {
println(a + ":" + b)
a + b
}
println("--- reduce")
println("reduce: " + listAdd + " to: " + listAdd.par.reduce(addOp(_, _)))
println("--- reduceLeft")
println("reduceLeft: " + listAdd + " to: " + listAdd.reduceLeft(addOp(_, _)))
println("--- reduceRight")
println("reduceRight: " + listAdd + " to: " + listAdd.reduceRight(addOp(_, _)))
输出:
--- fold & reduce & scan ---
--- reduce
1:2
4:5
3:9
3:12
reduce: List(1, 2, 3, 4, 5) to: 15
--- reduceLeft
1:2
3:3
6:4
10:5
reduceLeft: List(1, 2, 3, 4, 5) to: 15
--- reduceRight
4:5
3:9
2:12
1:14
reduceRight: List(1, 2, 3, 4, 5) to: 15
println("--- fold")
println("fold: " + listAdd + " to: " + listAdd.par.fold(100)(addOp(_, _)))
println("--- foldLeft")
println("foldLeft: " + listAdd + " to: " + listAdd.foldLeft(100)(addOp(_, _)))
println("--- foldRight")
println("foldRight: " + listAdd + " to: " + listAdd.foldRight(100)(addOp(_, _)))
输出:
--- fold
100:1
100:2
100:5
100:3
100:4
101:102
104:105
103:209
203:312
fold: List(1, 2, 3, 4, 5) to: 515
--- foldLeft
100:1
101:2
103:3
106:4
110:5
foldLeft: List(1, 2, 3, 4, 5) to: 115
--- foldRight
5:100
4:105
3:109
2:112
1:114
foldRight: List(1, 2, 3, 4, 5) to: 115
println("--- scan")
println("scan: " + listAdd + " to: " + listAdd.par.scan(100)(addOp(_, _)))
println("--- scanLeft")
println("scanLeft: " + listAdd + " to: " + listAdd.scanLeft(100)(addOp(_, _)))
println("--- scanRight")
println("scanRight: " + listAdd + " to: " + listAdd.scanRight(100)(addOp(_, _)))
输出:
--- scan
4:5
1:2
3:4
3:9
3:3
3:7
3:12
100:1
3:3
1:2
10:5
6:4
scan: List(1, 2, 3, 4, 5) to: ParVector(100, 101, 3, 6, 10, 15)
--- scanLeft
100:1
101:2
103:3
106:4
110:5
scanLeft: List(1, 2, 3, 4, 5) to: List(100, 101, 103, 106, 110, 115)
--- scanRight
5:100
4:105
3:109
2:112
1:114
scanRight: List(1, 2, 3, 4, 5) to: List(115, 114, 112, 109, 105, 100)
参照
- Scala in Depth by ScalaJoshua D. Suereth
- Community-driven documentation for Scala
- Collection Overview
Scala Collection简介的更多相关文章
- spark1.5 scala.collection.mutable.WrappedArray$ofRef cannot be cast to ...解决办法
下面是我在spark user list的求助贴,很快就得到了正确回答,有遇到问题的同学解决不了也可以去上面提问. I can use it under spark1.4.1,but error on ...
- idea中使用scala运行spark出现Exception in thread "main" java.lang.NoClassDefFoundError: scala/collection/GenTraversableOnce$class
idea中使用scala运行spark出现: Exception in thread "main" java.lang.NoClassDefFoundError: scala/co ...
- spark提示Caused by: java.lang.ClassCastException: scala.collection.mutable.WrappedArray$ofRef cannot be cast to [Lscala.collection.immutable.Map;
spark提示Caused by: java.lang.ClassCastException: scala.collection.mutable.WrappedArray$ofRef cannot b ...
- scala语言简介及其环境安装
scala语言简介及其环境安装 简介: 1.运行在JVM 上,兼容java语言 Scala的代码,都需要经过编译为字节码,然后交由Java虚拟机来运行.所以Scala和Java是可以无缝互操作的.Sc ...
- Apache Spark Exception in thread “main” java.lang.NoClassDefFoundError: scala/collection/GenTraversableOnce$class
问题: 今天用Maven搭建了一个Spark的Scala项目,运行后遇到下面异常: Apache Spark Exception in thread “main” java.lang.NoClassD ...
- Scala语言简介和开发环境配置
Scala语言的简介和开发环境搭建 Scala是一门结合了面向对象特征和函数式编程特征的语言,它是一个创新的编程语言产品.Scala可以做脚本(就像shell脚本一样),可以做服务端编程语言,可以写数 ...
- 机器学习的Spark与Scala开发简介
一.机器学习常用开发软件:Spark.Scala 1. Spark简介: MLlib包含的库文件有: 分类 降维 回归 聚类 推荐系统 自然语言处理 在线学习 统计学习方法:偏向理论性,数理统计的方 ...
- Scala Collection Method
接收一元函数 map 转换元素,主要应用于不可变集合 (1 to 10).map(i => i * i) (1 to 10).flatMap(i => (1 to i).map(j =&g ...
- Scala学习——简介
一.Scala简介 Scala 是 Scalable Language 的简写,是一门多范式的编程语言,设计初衷是实现可伸缩的语言并集成面向对象编程和函数式编程的各种特性. 二.Scala 环境搭建 ...
随机推荐
- Python中的模块与包
标准库的安装路径 在import模块的时候,python是通过系统路径找到这些模块的,我们可以将这些路径打印出来: >>> pprint.pprint(sys.path) ['', ...
- Base64的编码转换方式
下面,详细介绍Base64的编码转换方式. 所谓Base64,就是说选出64个字符----小写字母a-z.大写字母A-Z.数字0-9.符号"+"."/"(再加上 ...
- 使用wireshark抓取wcf生成的soap消息
在使用wcf的时候想看下生成的soap的格式是怎样的,就想到了抓包. 平时用惯的抓包工具是需要破解,另外有时会不太好用. 于是就想起来用wireshark. 首先遇到几个问题: 1.wireshart ...
- Linux监控工具 (Linux Monitor Tools)
最近发现几个好用的工具,顺便总结下. Zabbix和Nagios属于重量级,企业级Service procps-ng: top, free, ps, pgrep, vmstat ... sysstat ...
- HDU 3487 Play with Chain(Splay)
题目大意 给一个数列,初始时为 1, 2, 3, ..., n,现在有两种共 m 个操作 操作1. CUT a b c 表示把数列中第 a 个到第 b 个从原数列中删除得到一个新数列,并将它添加到新数 ...
- 配置svn
Linux搭建SVN Server 其中包括添加防火墙规则
- 从头构建自己的Linux系统
2012-09-10 在博文“Linux系统启动过程分析”中我们了解了linux系统的启动流程,今天我们就来手动一步一步从头来构建一个最小的linux系统,然后用模拟器将其加载起来.常见 ...
- CSS的sprite和单位
(1).关于css sprite技术 比方说: 有个论坛频道,其中有个一些论坛特有的小图标(火啊,顶啊之类),基于整站小图标大团结的思想,这些小图标也放在了那个icon背景图片上了.然而,数年下来,我 ...
- Spring.Net.FrameworkV3.0 版本发布了,感谢大家的支持
Spring.Net.FrameworkV3.0 版本发布了,感谢大家的支持. Spring.Net.Framework,基于.NET的快速信息化系统开发.整合框架,为企业或个人在.NET环境下快速开 ...
- 网络爬虫urllib2 tornado
百度不支持用tornado请求,可以用美团开放API 测试. import tornado.httpclient def fetch(url): http_header={'User-Agent':' ...