LeetCode:Unique Binary Search Trees

Given n, how many structurally unique BST's (binary search trees) that store values 1...n?

For example,
Given n = 3, there are a total of 5 unique BST's.

   1         3     3      2      1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3

分析:依次把每个节点作为根节点,左边节点作为左子树,右边节点作为右子树,那么总的数目等于左子树数目*右子树数目,实际只要求出前半部分节点作为根节点的树的数目,然后乘以2(奇数个节点还要加上中间节点作为根的二叉树数目)

递归代码:为了避免重复计算子问题,用数组保存已经计算好的结果

 class Solution {
public:
int numTrees(int n) {
// IMPORTANT: Please reset any member data you declared, as
// the same Solution instance will be reused for each test case.
int nums[n+]; //nums[i]表示i个节点的二叉查找树的数目
memset(nums, , sizeof(nums));
return numTreesRecur(n, nums);
}
int numTreesRecur(int n, int nums[])
{
if(nums[n] != )return nums[n];
if(n == ){nums[] = ; return ;}
int tmp = (n>>);
for(int i = ; i <= tmp; i++)
{
int left,right;
if(nums[i-])left = nums[i-];
else left = numTreesRecur(i-, nums);
if(nums[n-i])right = nums[n-i];
else right = numTreesRecur(n-i, nums);
nums[n] += left*right;
}
nums[n] <<= ;
if(n % != )
{
int val;
if(nums[tmp])val = nums[tmp];
else val = numTreesRecur(tmp, nums);
nums[n] += val*val;
}
return nums[n];
}
};

非递归代码:从0个节点的二叉查找树数目开始自底向上计算,dp方程为nums[i] = sum(nums[k-1]*nums[i-k]) (k = 1,2,3...i)

 class Solution {
public:
int numTrees(int n) {
// IMPORTANT: Please reset any member data you declared, as
// the same Solution instance will be reused for each test case.
int nums[n+]; //num[i]表示i个节点的二叉查找树数目
memset(nums, , sizeof(nums));
nums[] = ;
for(int i = ; i <= n; i++)
{
int tmp = (i>>);
for(int j = ; j <= tmp; j++)
nums[i] += nums[j-]*nums[i-j];
nums[i] <<= ;
if(i % != )
nums[i] += nums[tmp]*nums[tmp];
}
return nums[n];
}
};

LeetCode:Unique Binary Search Trees II

Given n, generate all structurally unique BST's (binary search trees) that store values 1...n.

For example,
Given n = 3, your program should return all 5 unique BST's shown below.

   1         3     3      2      1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3

按照上一题的思路,我们不仅仅要保存i个节点对应的BST树的数目,还要保存所有的BST树,而且1、2、3和4、5、6虽然对应的BST数目和结构一样,但是BST树是不一样的,因为节点值不同。

我们用数组btrees[i][j][]保存节点i, i+1,...j-1,j构成的所有二叉树,从节点数目为1的的二叉树开始自底向上最后求得节点数目为n的所有二叉树                                                                               本文地址

 /**
* Definition for binary tree
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
vector<TreeNode *> generateTrees(int n) {
// IMPORTANT: Please reset any member data you declared, as
// the same Solution instance will be reused for each test case.
vector<vector<vector<TreeNode*> > > btrees(n+, vector<vector<TreeNode*> >(n+, vector<TreeNode*>()));
for(int i = ; i <= n+; i++)
btrees[i][i-].push_back(NULL); //为了下面处理btrees[i][j]时 i > j的边界情况
for(int k = ; k <= n; k++)//k表示节点数目
for(int i = ; i <= n-k+; i++)//i表示起始节点
{
for(int rootval = i; rootval <= k+i-; rootval++)
{//求[i,i+1,...i+k-1]序列对应的所有BST树
for(int m = ; m < btrees[i][rootval-].size(); m++)//左子树
for(int n = ; n < btrees[rootval+][k+i-].size(); n++)//右子树
{
TreeNode *root = new TreeNode(rootval);
root->left = btrees[i][rootval-][m];
root->right = btrees[rootval+][k+i-][n];
btrees[i][k+i-].push_back(root);
}
}
}
return btrees[][n];
}
};

【版权声明】转载请注明出处:http://www.cnblogs.com/TenosDoIt/p/3448569.html

LeetCode:Unique Binary Search Trees I II的更多相关文章

  1. [LeetCode] Unique Binary Search Trees II 独一无二的二叉搜索树之二

    Given n, generate all structurally unique BST's (binary search trees) that store values 1...n. For e ...

  2. LeetCode: Unique Binary Search Trees II 解题报告

    Unique Binary Search Trees II Given n, generate all structurally unique BST's (binary search trees) ...

  3. leetcode -day28 Unique Binary Search Trees I II

    1.  Unique Binary Search Trees II Given n, generate all structurally unique BST's (binary search t ...

  4. LeetCode - Unique Binary Search Trees II

    题目: Given n, generate all structurally unique BST's (binary search trees) that store values 1...n. F ...

  5. Leetcode:Unique Binary Search Trees & Unique Binary Search Trees II

    Unique Binary Search Trees Given n, how many structurally unique BST's (binary search trees) that st ...

  6. [LeetCode] Unique Binary Search Trees 独一无二的二叉搜索树

    Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...

  7. Unique Binary Search Trees I & II

    Given n, how many structurally unique BSTs (binary search trees) that store values 1...n? Example Gi ...

  8. LeetCode——Unique Binary Search Trees II

    Question Given an integer n, generate all structurally unique BST's (binary search trees) that store ...

  9. [Leetcode] Unique binary search trees ii 唯一二叉搜索树

    Given n, generate all structurally unique BST's (binary search trees) that store values 1...n. For e ...

随机推荐

  1. Effective Java 30 Use Enums instead of int constants

    Enumerated type is a type whose legal values consist of a fixed set of constants, such as the season ...

  2. Effective Java 73 Avoid thread groups

    Thread groups were originally envisioned as a mechanism for isolating applets for security purposes. ...

  3. 「ubuntu」通过无线网络安装Ubuntu Server,启动系统后如何连接无线网络

    接触Ubuntu系统不久,发现无线网络环境下安装Ubuntu Server一个不太人性化的设计:在安装过程中选择无线网卡,即使用无线网络安装(此时需要选择Wi-Fi网络并输入密码),但系统安装完成重启 ...

  4. Elasticsearch Scripts disabled

    Es 2.2版本中,在查询语句中使用script 时,提示如下错误 scripts of type [inline], operation [aggs] and lang [groovy] are d ...

  5. 一·创建Linux服务器(基于阿里云)

    本系统是基于阿里云服务器,购买请前往https://www.aliyun.com/?spm=5176.8142029.388261.1.taXish ,由于经济能力的限制,本人购买的是最低配置如下 其 ...

  6. chrome升级54以后,显示Adobe Flash Player 因过期而遭到阻止

    请直接下载 最新的Adobe flash player 离线安装包.经测试,在线安装不管用. 百度云地址: install_flash_player_23_ppapi.exe  密码:8c2i

  7. CVE

    一.简介 CVE 的英文全称是"Common Vulnerabilities & Exposures"公共漏洞和暴露.CVE就好像是一个字典表,为广泛认同的信息安全漏洞或者 ...

  8. 动手学习TCP: 环境搭建

    前一段时间通过Wireshark抓包,定位了一个客户端和服务器之间数据传输的问题.最近就抽空看了看<TCP/IP详解 卷1>中关于TCP的部分,书中用了很多例子展示了TCP/IP协议中的一 ...

  9. [转]Jquery easyui开启行编辑模式增删改操作

    本文转自:http://www.cnblogs.com/nyzhai/archive/2013/05/14/3077152.html Jquery easyui开启行编辑模式增删改操作先上图 Html ...

  10. 【读书笔记《Android游戏编程之从零开始》】16.游戏开发基础(动画)

    1. Animation动画   在Android 中,系统提供了动画类 Animation ,其中又分为四种动画效果: ● AlphaAnimation:透明度渐变动画 ● ScaleAnimati ...