LeetCode:Unique Binary Search Trees I II
LeetCode:Unique Binary Search Trees
Given n, how many structurally unique BST's (binary search trees) that store values 1...n?
For example,
Given n = 3, there are a total of 5 unique BST's.
1 3 3 2 1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3
分析:依次把每个节点作为根节点,左边节点作为左子树,右边节点作为右子树,那么总的数目等于左子树数目*右子树数目,实际只要求出前半部分节点作为根节点的树的数目,然后乘以2(奇数个节点还要加上中间节点作为根的二叉树数目)
递归代码:为了避免重复计算子问题,用数组保存已经计算好的结果
class Solution {
public:
int numTrees(int n) {
// IMPORTANT: Please reset any member data you declared, as
// the same Solution instance will be reused for each test case.
int nums[n+]; //nums[i]表示i个节点的二叉查找树的数目
memset(nums, , sizeof(nums));
return numTreesRecur(n, nums);
}
int numTreesRecur(int n, int nums[])
{
if(nums[n] != )return nums[n];
if(n == ){nums[] = ; return ;}
int tmp = (n>>);
for(int i = ; i <= tmp; i++)
{
int left,right;
if(nums[i-])left = nums[i-];
else left = numTreesRecur(i-, nums);
if(nums[n-i])right = nums[n-i];
else right = numTreesRecur(n-i, nums);
nums[n] += left*right;
}
nums[n] <<= ;
if(n % != )
{
int val;
if(nums[tmp])val = nums[tmp];
else val = numTreesRecur(tmp, nums);
nums[n] += val*val;
}
return nums[n];
}
};
非递归代码:从0个节点的二叉查找树数目开始自底向上计算,dp方程为nums[i] = sum(nums[k-1]*nums[i-k]) (k = 1,2,3...i)
class Solution {
public:
int numTrees(int n) {
// IMPORTANT: Please reset any member data you declared, as
// the same Solution instance will be reused for each test case.
int nums[n+]; //num[i]表示i个节点的二叉查找树数目
memset(nums, , sizeof(nums));
nums[] = ;
for(int i = ; i <= n; i++)
{
int tmp = (i>>);
for(int j = ; j <= tmp; j++)
nums[i] += nums[j-]*nums[i-j];
nums[i] <<= ;
if(i % != )
nums[i] += nums[tmp]*nums[tmp];
}
return nums[n];
}
};
LeetCode:Unique Binary Search Trees II
Given n, generate all structurally unique BST's (binary search trees) that store values 1...n.
For example,
Given n = 3, your program should return all 5 unique BST's shown below.
1 3 3 2 1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3
按照上一题的思路,我们不仅仅要保存i个节点对应的BST树的数目,还要保存所有的BST树,而且1、2、3和4、5、6虽然对应的BST数目和结构一样,但是BST树是不一样的,因为节点值不同。
我们用数组btrees[i][j][]保存节点i, i+1,...j-1,j构成的所有二叉树,从节点数目为1的的二叉树开始自底向上最后求得节点数目为n的所有二叉树 本文地址
/**
* Definition for binary tree
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
vector<TreeNode *> generateTrees(int n) {
// IMPORTANT: Please reset any member data you declared, as
// the same Solution instance will be reused for each test case.
vector<vector<vector<TreeNode*> > > btrees(n+, vector<vector<TreeNode*> >(n+, vector<TreeNode*>()));
for(int i = ; i <= n+; i++)
btrees[i][i-].push_back(NULL); //为了下面处理btrees[i][j]时 i > j的边界情况
for(int k = ; k <= n; k++)//k表示节点数目
for(int i = ; i <= n-k+; i++)//i表示起始节点
{
for(int rootval = i; rootval <= k+i-; rootval++)
{//求[i,i+1,...i+k-1]序列对应的所有BST树
for(int m = ; m < btrees[i][rootval-].size(); m++)//左子树
for(int n = ; n < btrees[rootval+][k+i-].size(); n++)//右子树
{
TreeNode *root = new TreeNode(rootval);
root->left = btrees[i][rootval-][m];
root->right = btrees[rootval+][k+i-][n];
btrees[i][k+i-].push_back(root);
}
}
}
return btrees[][n];
}
};
【版权声明】转载请注明出处:http://www.cnblogs.com/TenosDoIt/p/3448569.html
LeetCode:Unique Binary Search Trees I II的更多相关文章
- [LeetCode] Unique Binary Search Trees II 独一无二的二叉搜索树之二
Given n, generate all structurally unique BST's (binary search trees) that store values 1...n. For e ...
- LeetCode: Unique Binary Search Trees II 解题报告
Unique Binary Search Trees II Given n, generate all structurally unique BST's (binary search trees) ...
- leetcode -day28 Unique Binary Search Trees I II
1. Unique Binary Search Trees II Given n, generate all structurally unique BST's (binary search t ...
- LeetCode - Unique Binary Search Trees II
题目: Given n, generate all structurally unique BST's (binary search trees) that store values 1...n. F ...
- Leetcode:Unique Binary Search Trees & Unique Binary Search Trees II
Unique Binary Search Trees Given n, how many structurally unique BST's (binary search trees) that st ...
- [LeetCode] Unique Binary Search Trees 独一无二的二叉搜索树
Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...
- Unique Binary Search Trees I & II
Given n, how many structurally unique BSTs (binary search trees) that store values 1...n? Example Gi ...
- LeetCode——Unique Binary Search Trees II
Question Given an integer n, generate all structurally unique BST's (binary search trees) that store ...
- [Leetcode] Unique binary search trees ii 唯一二叉搜索树
Given n, generate all structurally unique BST's (binary search trees) that store values 1...n. For e ...
随机推荐
- System.Data.Entity 无法引用的问题
最近刚学MVC,跟着网上的博客学习,发现代码中有这样一句: using System.Data; using System.Data.Entity; 我项目引用的时候,也引用了System.Data. ...
- UC 浏览器远程调试手机web网页记录
浏览器远程调试插件有很多,本来要使用chrome浏览器的调试插件的,但是需要FQ才能使用(公司网络有限制,果断放弃),最终选择使用UC浏览器的. 其实UC官网插件使用已经介绍的很详细了,但是有几处坑需 ...
- 烂泥:【解决】Ubuntu下使用SSH连接centos系统很慢
本文由秀依林枫提供友情赞助,首发于烂泥行天下. 这几天在Ubuntu下使用SSH连接centos系统,发现连接很慢.建议一个连接大约需要30s.很是坑爹,如下: 后来查询相关资料,发现这个是Ubunt ...
- 工作中常用的Linux命令:目录
工作两三年,每天都和Linux打交道,但每每使用Linux命令的时候却会像提笔忘字般不知如何使用,常常查手册或到网上找资料.此系列文章主要是为了方便自己在使用命令时随时可查阅.鄙人才疏学浅,文中若有任 ...
- 解决ubuntu sudo not found command的问题
将/etc/sudoers 中Defaults env_reset改成Defaults !env_reset取消掉对PATH变量的重置, 然后在/etc/bash.bashrc中最后添加alias s ...
- c# App.Config详解
c# App.Config详解 应用程序配置文件是标准的 XML 文件,XML 标记和属性是区分大小写的.它是可以按需要更改的,开发人员可以使用配置文件来更改设置,而不必重编译应用程序. 配置文件的根 ...
- Virtual Box上安装CentOS7
问题1:安装完没有桌面系统(Gnome或KDE)解答:安装的时候,软件选择为最小安装",更改该选择 问题2:开机提示Initial setup of CentOS Linux 7 (core ...
- 谷歌和HTTPS
谷歌和HTTPS HTTPS被觉得是加强互联网安全的次要部分,而且使用广泛.google近来做了一份关于数据加密近况的陈述. 正在陈述的最新部分中,提到了google以及第三方构造对于数据加密所做的贡 ...
- Medial Queries的另一用法:实现IE hack的方法
所谓Medial Queries就是媒体查询. 随着Responsive设计的流行,Medial Queries可算是越来越让人观注了.他可以让Web前端工程实现不同设备下的样式选择,让站点在不同的设 ...
- 字典树(Tire)模板
#include<stdio.h> #include<string.h> #include<stdlib.h> struct node { node *ne[]; ...