出自蓝书《算法竞赛入门经典训练指南》

求最长上升子序列是很常见的可以用动态规划解决的问题……

很容易根据最优子结构之类的东西得出

$\text{dp}[i]$为以第i个数结尾的最长上升子序列长度

定义$\max{\emptyset}=0$,粗略地写出

\[\text{dp}[i] = \max \left\{ \text{dp}[j]|0\leqslant j < i,A[j] < A[i] \right\} + 1\]

状态数$\mathcal{O}({n})$,如果直接枚举转移,转移数$\mathcal{O}({n})$,时间复杂度$\mathcal{O}({n^2})$

现在想办法加速转移……

设$\text{dp}^{-1}[x]$为$x=\text{dp}[i]$中$\text{A}[i]$最小的$i$

设$\text{pd}[x]=\text{A}[\text{dp}^{-1}[x]]$

若有$\text{A}[i]<\text{A}[j]$且$\text{dp}[i]==\text{dp}[j]$,那么之后的元素只需要比$\text{A}[i]=\text{pd}[x]=\text{pd}[\text{dp}[i]]$大就可以用$\text{dp}[i]$进行转移

很容易得\[\text{pd}[1]\leqslant \text{pd}[2]\leqslant \text{pd}[3]\leqslant \cdots \leqslant \text{pd}[n] \tag{1}\label{1} \]

\[\text{dp}[i]=\max\left\{x|0\leqslant j < i,\text{pd}[x]<A[i]\right\}+1\]

即最大的小于A[i]的下标加1,也就等价于最小的大于等于A[i]的下标,设为$k$ $\tag{2}\label{2}$

因为最后$[l,r)$区间收缩到$\emptyset$时左侧区间最后一个元素加一就是右侧区间第一个元素

用STL的lower_bound就不需要自己写二分了

因为$\eqref{1}\eqref{2}$,所以$A[i]\leqslant \text{pd}[k]$,转移以后需要更新$\text{pd}[k]$

但是之前少考虑了$0\leqslant j < i$,只需将未计算的$\text{pd}[x]$设为INF就好了= =

时间复杂度$\mathcal{O}(n\log n)$

代码

REPE(i,1,n) pd[i]=INF;
REP(i,0,n) {
int k=lower_bound(pd+1,pd+1+n,A[i])-g;
dp[i]=k;
pd[k]=A[i];
}

很容易得最长非降子序列只需将lower_bound改为upper_bound(同样照着二分的参考图)

然后最长下降子序列只需添加greater<int>()参数,并且初始化为-INF

注意dp为以第i个数结尾的长度,所以求最长还需求一遍max

LIS的O(nlogn)算法的更多相关文章

  1. POJ 1631 Bridging signals(LIS O(nlogn)算法)

    Bridging signals Description 'Oh no, they've done it again', cries the chief designer at the Waferla ...

  2. 最长上升子序列(LIS)长度的O(nlogn)算法

    最长上升子序列(LIS)的典型变形,熟悉的n^2的动归会超时.LIS问题可以优化为nlogn的算法.定义d[k]:长度为k的上升子序列的最末元素,若有多个长度为k的上升子序列,则记录最小的那个最末元素 ...

  3. 最长递增子序列 O(NlogN)算法

    转自:点击打开链接 最长递增子序列,Longest Increasing Subsequence 下面我们简记为 LIS. 排序+LCS算法 以及 DP算法就忽略了,这两个太容易理解了. 假设存在一个 ...

  4. 最长不下降子序列的O(n^2)算法和O(nlogn)算法

    一.简单的O(n^2)的算法 很容易想到用动态规划做.设lis[]用于保存第1~i元素元素中最长不下降序列的长度,则lis[i]=max(lis[j])+1,且num[i]>num[j],i&g ...

  5. 最长上升子序列O(nlogn)算法详解

    最长上升子序列 时间限制: 10 Sec   内存限制:128 MB 题目描述 给定一个序列,初始为空.现在我们将1到N的数字插入到序列中,每次将一个数字插入到一个特定的位置.我们想知道此时最长上升子 ...

  6. 连续子序列最大和的O(NlogN)算法

    对于一个数组,例如:int[] a = {4,-3,5,-2,-1,2,6,-2}找出一个连续子序列,对于任意的i和j,使得a[i]+a[i+1]+a[i+2]+.......+a[j]他的和是所有子 ...

  7. 浅析拯救小矮人的 nlogn 算法及其证明

    浅析拯救小矮人的 nlogn 算法及其证明 题型简介: 有 $ n $ 个人,第 $ i $ 个人身高 $ a_i $ 手长 $ b_i $ ,他们为了从一个高为 $ H $ 的洞中出去,决定搭人梯. ...

  8. 最长上升子序列(LIS)n2 nlogn算法解析

    题目描述 给定一个数列,包含N个整数,求这个序列的最长上升子序列. 例如 2 5 3 4 1 7 6 最长上升子序列为 4. 1.O(n2)算法解析 看到这个题,大家的直觉肯定都是要用动态规划来做,那 ...

  9. hdu 1950 最长上升子序列(lis) nlogn算法【dp】

    这个博客说的已经很好了.http://blog.csdn.net/shuangde800/article/details/7474903 简单记录一下自己学的: 问题就是求一个数列最长上升子序列的长度 ...

随机推荐

  1. vue 常用语法糖

    //来自 https://www.cnblogs.com/lhl66/p/8021730.html 侵删 el:element 需要获取的元素,一定是HTML中的根容器元素 data:用于数据的存储 ...

  2. 利用MingW检验程序运行内存

    今天zhx老师在讲课的时候提到了一种检验程序内存的方法 一般计算内存的方法就是手算,手动计算代码中每个变量所占的内存然后加起来 具体可以参考这篇文章 zhx老师讲的方法可以实现全自动化计算内存 具体怎 ...

  3. ArcGIS 网络分析[1] 利用自定义点线数据(shp或数据库)创建网络数据集【小白向】

    前言 似乎除了官方介绍的例子,我还没有在网上见过一篇介绍如何“使用自己的数据”创建“网络数据集”的文章. 究其原因,是因为当前的高质量的线数据或保密,或采集困难. 有介绍几何网络的,有介绍如何用官方S ...

  4. C# 使用NPOI出现超过最大字体数和单元格格式变成一样的解决

    在使用NPOI写入Excel文件的时候出现“它已经超出最多允许的字体数”,查询资料发现是字体创建太多的原因,需要将常用字体创建好,传入CellStyle中.参考(http://www.cnblogs. ...

  5. 基于GIS的视频管理指挥平台

    平台利用空间地理信息技术,以GIS地图为基础,将各类信息空间化.可视化,实现基于空间电子地图的可视化查询和分析,它能使情报.推理.分析与其他可用数据融为一体,提供依托于电子地图的清晰而精确的现场态势图 ...

  6. Redis环境搭建和代码测试及与GIS结合的GEO数据类型预研

    文章版权由作者李晓晖和博客园共有,若转载请于明显处标明出处:http://www.cnblogs.com/naaoveGIS/ 1.背景 1.1传统MySQL+ Memcached架构遇到的问题 My ...

  7. 在 Apex 中得到 sObject 的信息

    Salesforce 的数据模型是基于 sObject 的.在 Apex 中,所有的标准对象.自定义对象都是继承自 sObject 的. 关于在 Apex 中得到 sObject 的信息,我们要基于两 ...

  8. Android为TV端助力 反编译

    http://blog.csdn.net/vipzjyno1/article/details/21039349/ apktool.bat d -f  test.apk  test     这条命令修改 ...

  9. 我认知的javascript之作用域和闭包

    说到javascript,就不得不说javascript的作用域和闭包:当然,还是那句老话,javascript在网上都说得很透彻了,我也就不过多的强调了: 作用域:javascript并没有像其他的 ...

  10. Zookeeper与Kafka基础概念和原理

    1.zookeeper概念介绍 在介绍ZooKeeper之前,先来介绍一下分布式协调技术,所谓分布式协调技术主要是用来解决分布式环境当中多个进程之间的同步控制,让他们有序的去访问某种共享资源,防止造成 ...