Introduction

For this first programming assignment you will write three functions that are meant to interact with dataset that accompanies this assignment. The dataset is contained in a zip file specdata.zip that you can download from the Coursera web site.

Data

The zip file containing the data can be downloaded here:

The zip file contains 332 comma-separated-value (CSV) files containing pollution monitoring data for fine particulate matter (PM) air pollution at 332 locations in the United States. Each file contains data from a single monitor and the ID number for each monitor is contained in the file name. For example, data for monitor 200 is contained in the file “200.csv”. Each file contains three variables:

  • Date: the date of the observation in YYYY-MM-DD format (year-month-day)
  • sulfate: the level of sulfate PM in the air on that date (measured in micrograms per cubic meter)
  • nitrate: the level of nitrate PM in the air on that date (measured in micrograms per cubic meter)

For this programming assignment you will need to unzip this file and create the directory ‘specdata’. Once you have unzipped the zip file, do not make any modifications to the files in the ‘specdata’ directory. In each file you’ll notice that there are many days where either sulfate or nitrate (or both) are missing (coded as NA). This is common with air pollution monitoring data in the United States.

Part 1

Write a function named ‘pollutantmean’ that calculates the mean of a pollutant (sulfate or nitrate) across a specified list of monitors. The function ‘pollutantmean’ takes three arguments: ‘directory’, ‘pollutant’, and ‘id’. Given a vector monitor ID numbers, ‘pollutantmean’ reads that monitors’ particulate matter data from the directory specified in the ‘directory’ argument and returns the mean of the pollutant across all of the monitors, ignoring any missing values coded as NA. A prototype of the function is as follows
pollutantmean <- function(directory, pollutant, id = 1:332) {
## 'directory' is a character vector of length 1 indicating
## the location of the CSV files ## 'pollutant' is a character vector of length 1 indicating
## the name of the pollutant for which we will calculate the
## mean; either "sulfate" or "nitrate". ## 'id' is an integer vector indicating the monitor ID numbers
## to be used ## Return the mean of the pollutant across all monitors list
## in the 'id' vector (ignoring NA values)
## NOTE: Do not round the result!
}

You can see some example output from this function. The function that you write should be able to match this output. Please save your code to a file named pollutantmean.R.

Part 2

Write a function that reads a directory full of files and reports the number of completely observed cases in each data file. The function should return a data frame where the first column is the name of the file and the second column is the number of complete cases. A prototype of this function follows

complete <- function(directory, id = 1:332) {
## 'directory' is a character vector of length 1 indicating
## the location of the CSV files ## 'id' is an integer vector indicating the monitor ID numbers
## to be used ## Return a data frame of the form:
## id nobs
## 1 117
## 2 1041
## ...
## where 'id' is the monitor ID number and 'nobs' is the
## number of complete cases
}

ou can see some example output from this function. The function that you write should be able to match this output. Please save your code to a file named complete.R. To run the submit script for this part, make sure your working directory has the file complete.R in it.

Part 3

Write a function that takes a directory of data files and a threshold for complete cases and calculates the correlation between sulfate and nitrate for monitor locations where the number of completely observed cases (on all variables) is greater than the threshold. The function should return a vector of correlations for the monitors that meet the threshold requirement. If no monitors meet the threshold requirement, then the function should return a numeric vector of length 0. A prototype of this function follows

corr <- function(directory, threshold = 0) {
## 'directory' is a character vector of length 1 indicating
## the location of the CSV files ## 'threshold' is a numeric vector of length 1 indicating the
## number of completely observed observations (on all
## variables) required to compute the correlation between
## nitrate and sulfate; the default is 0 ## Return a numeric vector of correlations
## NOTE: Do not round the result!
}

For this function you will need to use the ‘cor’ function in R which calculates the correlation between two vectors. Please read the help page for this function via ‘?cor’ and make sure that you know how to use it.
You can see some example output from this function. The function that you write should be able to match this output. Please save your code to a file named corr.R. To run the submit script for this part, make sure your working directory has the file corr.R in it.

--------------------------------------------------------------作答區------------------------------------------------------------------------

可以直接點選連結下載檔案再行解壓縮

或是自訂R的 get_specdata()函數來執行上述步驟

# 設立get_specdata()
get_specdata <- function(dest_file) {
specdata_url <- "https://storage.googleapis.com/jhu_rprg/specdata.zip" #擷取檔案下載的url
download.file(specdata_url, destfile = dest_file)             #以download.file下載,destfile = 指定位置 *註:此處~會為R主程式的wd
unzip(dest_file)                     #unzip檔案至Rstudio的wd
}
get_specdata("~/specdata.zip") #可指定解壓位置的get_specdata()
get_specdata <- function(dest_file, ex_dir) {
specdata_url <- "https://storage.googleapis.com/jhu_rprg/specdata.zip"
download.file(specdata_url, destfile = dest_file)           
unzip(dest_file, exdir = ex_dir)                     #exdir為指定位置*註:此處~會為R主程式的wd
}
get_specdata("~/specdata.zip", "D:/R/Project")

pollutantmean()

pollutantmean <- function(directory,pollutant,id = 1:332) {
CSV_files_dir <- list.files(directory, full.names = T) #將茲目標料夾中的files,匯成list
dataf <-data.frame()
for(i in id){
dataf <- rbind(dataf,read.csv(CSV_files_dir[i])) #rbind將for迴圈的資料綁成新row
}
mean(dataf[,pollutant],na.rm = T) #所有row的 指定column做計算
}

另一種參考

pollutantmean <- function(directory, pollutant, id= 1:332){
pollutants = c() #設立空vector用於接數據
filenames = list.files(directory) #此處沒有用 full_name參數,只會有files name for(i in id){
filepath=paste(directory,"/" ,filenames[i], sep="") #將檔名與路徑貼起來,製成完整路徑fliepath
data = read.csv(filepath, header = TRUE) #讀取目標檔案及其header,存至data
pollutants = c(pollutants, data[,pollutant]) #將每筆數據加長至vector中,存至pollutants
}
pollutants_mean = mean(pollutants, na.rm=TRUE) #計算並存至pollutants_mean pollutants_mean #回報
}
練習
pollutantmean("specdata", "sulfate", 1:10)
[1] 4.064
pollutantmean("specdata", "nitrate", 70:72)
[1] 1.706
pollutantmean("specdata", "sulfate", 34)
[1] 1.477
pollutantmean("specdata", "nitrate")
[1] 1.703

complete()

complete <- function(directory, id = 1:332) {
CSV_files <- list.files(directory, full.names = TRUE)
datadf <- data.frame()
for (i in id) {
moni_i <- read.csv(CSV_files[i])
nobs <- sum(complete.cases(moni_i)) #complete.cases()可得是否為complete的邏輯vector,sum()加總True值
tmpdf <- data.frame(i, nobs) #將測站ID及其結果存成 df
datadf <- rbind(datadf, tmpdf) #將新的資料綁至新row
}
colnames(datadf) <- c("id", "nobs") #將column賦名
datadf #回報
}

輸出data frame

練習
查看指定感測器中,具有完整資訊的筆數
cc <- complete("specdata", c(6, 10, 20, 34, 100, 200, 310)) #cc5中有"id" "nobs" 兩columns
print(cc$nobs) #nobs的 vector [1] 228 148 124 165 104 460 232
查看指定感測器中,具有完整資訊的筆數
cc <- complete("specdata", 54) #cc中有"id" "nobs" 兩columns
print(cc$nobs) #nobs的 vector
[1] 219
隨機抽樣查看10組感測器,具有完整資訊的筆數
set.seed(42)
cc <- complete("specdata", 332:1) #cc中有 "id" "nobs"兩columns *row是反讀,但此處沒差
use <- sample(332, 10) #332中亂數取10個成 use vector
print(cc[use, "nobs"]) #第 use row 的 "nobs" [1] 711 135 74 445 178 73 49 0 687 237

corr()

corr <- function(directory, threshold = 0) {                           #門檻defalut = 0
CSV_files <- list.files(directory, full.names = TRUE)
dat <- vector(mode = "numeric", length = 0) #設置空的numeric vector
for (i in 1:length(CSV_files)) {
moni_i <- read.csv(CSV_files[i]) #此處沒有指定id,直接以length讀長度
csum <- sum((!is.na(moni_i$sulfate)) & (!is.na(moni_i$nitrate))) #獲得兩側相都沒na測值的True數量
if (csum > threshold) { #超出門檻的
tmp <- moni_i[which(!is.na(moni_i$sulfate)), ] #留下sulfate是True的
submoni_i <- tmp[which(!is.na(tmp$nitrate)), ] #再留下nitrate是True的
dat <- c(dat, cor(submoni_i$sulfate, submoni_i$nitrate)) #將cor()值綁長至dat vector 中
}
}
dat
}

輸出numeric vector

練習
從排序完成的相關係數中,隨機抽樣5組,並四捨五入至小數點下第四位
cr <- corr("specdata")
cr <- sort(cr)
set.seed(868)
out <- round(cr[sample(length(cr), 5)], 4)
print(out) [1] 0.2688 0.1127 -0.0085 0.4586 0.0447
資料完整數大於129筆的資料組數,其相關係數排序完成後隨機抽樣5組,並四捨五入至小數點下第四位
cr <- corr("specdata", 129)
cr <- sort(cr)
n <- length(cr)
set.seed(197)
out <- c(n, round(cr[sample(n, 5)], 4))
print(out) [1] 243.0000 0.2540 0.0504 -0.1462 -0.1680 0.5969
資料完整度大於2000筆的資料組數,與資料完整度大於1000筆的資料,其相關係數排序完成後以四捨五入呈現至小數點下第四位
cr <- corr("specdata", 2000)
n <- length(cr)
cr <- corr("specdata", 1000)
cr <- sort(cr)
print(c(n, round(cr, 4))) [1] 0.0000 -0.0190 0.0419 0.1901

[R] [Johns Hopkins] R Programming 作業 Week 2 - Air Pollution的更多相关文章

  1. [R] [Johns Hopkins] R Programming -- week 3

    library(datasets) head(airquality) #按月分組 s <- split(airquality, airquality$Month) str(s) summary( ...

  2. [R] [Johns Hopkins] R Programming -- week 4

    #Generating normal distribution (Pseudo) random number x<-rnorm(10) x x2<-rnorm(10,2,1) x2 set ...

  3. T100——程序从标准签出客制后注意r.c和r.l

    标准签出客制后,建议到对应4gl目录,客制目录 r.c afap280_01 r.l afap280_01 ALL 常用Shell操作命令: r.c:编译程序,需在4gl路径之下执行,产生的42m会自 ...

  4. R语言 启动报错 *** glibc detected *** /usr/lib64/R/bin/exec/R: free(): invalid next size (fast): 0x000000000263a420 *** 错误 解决方案

    *** glibc detected *** /usr/lib64/R/bin/exec/R: free(): invalid next size (fast): 0x000000000263a420 ...

  5. 【R笔记】R语言函数总结

    R语言与数据挖掘:公式:数据:方法 R语言特征 对大小写敏感 通常,数字,字母,. 和 _都是允许的(在一些国家还包括重音字母).不过,一个命名必须以 . 或者字母开头,并且如果以 . 开头,第二个字 ...

  6. [转]2010 Ruby on Rails 書單 與 練習作業

    原帖:http://wp.xdite.net/?p=1754 ========= 學習 Ruby on Rails 最快的途徑無非是直接使用 Rails 撰寫產品.而這個過程中若有 mentor 指導 ...

  7. Python获取爬虫数据, r.text 与 r.content 的区别

    1.简单粗暴来讲: text 返回的是unicode 型的数据,一般是在网页的header中定义的编码形式. content返回的是bytes,二级制型的数据. 如果想要提取文本就用text 但是如果 ...

  8. 判斷作業系統為 64bit 或 32bit z

    有時我們在開發Windows 桌面應用程式時,會發生一些弔詭的事情,作業系統位元數就是一個蠻重要的小細節,若您寫的應用程式在Windows 的32bit 作業系統上可以完美的運行,但不見得在64bit ...

  9. python文件操作打开模式 r,w,a,r+,w+,a+ 区别辨析

    主要分成三大类: r 和 r+     "读"功能 r  只读 r+ 读写(先读后写) 辨析:对于r,只有读取功能,利用光标的移动,可以选择要读取的内容. 对于r+,同时具有读和写 ...

随机推荐

  1. Git实操

    使用git首先要理解工作区(working).暂存区(stage或者index).和版本库(repo区),很多命令都是和这三个概念相关的. git init 初始化git仓库,会生成默认的.git文件 ...

  2. C语法简单测试

    1.未初始化的枚举变量 /* uninitialized-enum.c */ #include <stdio.h> , black, blue}; int main(void) { enu ...

  3. ;html5斜体字

    font-style:italic; italic|oblique|normal 依次倾斜,越来越邪:

  4. 搭建项目(Vue学习笔记一)

    一.在搭建Vue项目之前首先要搞明白以下几个问题 1.Vue.js是什么 vue.js是一个脚本库. 2.webpack 模块打包机,分析项目结构,找到JavaScript模块以及其他的一些浏览器不能 ...

  5. vim安装

    vim的下载与安装 在线安装 sudo yum install vim 源码编译安装 1)   下载源码 git clone https://github.com/vim/vim.git 2)   编 ...

  6. c++ string 转double

    #include <iostream>#include <sstream> //使用stringstream需要引入这个头文件using namespace std; Type ...

  7. Sublime Text 3 安装 Package Control

    1.打开sublime text 3 2.Ctrl+`打开控制台或者View->Show Console菜单打开命令行,输入下面这段代码后按Enter键 import urllib.reques ...

  8. 2018-计算机系机试-A

    #include<stdio.h> #include<cstdio> #include<cmath> #include<cstring> #includ ...

  9. 2018-计算机系机试(第二批)-E-绝对值排序

    单点时限: 2.0 sec 内存限制: 256 MB 输入 n 个整数,按照绝对值从大到小排序.绝对值相等的整数按照整数值从小到大排序. 例如:3 个整数 -2,2 和 -6 的排序结果为 -6, - ...

  10. servlet之小demo(四)

    描述: 1.在web.xml文件中设置两个web应用的初始化参数,user和password 2.定义一个login.html,里面定义两个请求字段:user,password,发送请求到loginS ...