[R] [Johns Hopkins] R Programming 作業 Week 2 - Air Pollution
Introduction
For this first programming assignment you will write three functions that are meant to interact with dataset that accompanies this assignment. The dataset is contained in a zip file specdata.zip that you can download from the Coursera web site.
Data
The zip file containing the data can be downloaded here:
- specdata.zip [2.4MB]
The zip file contains 332 comma-separated-value (CSV) files containing pollution monitoring data for fine particulate matter (PM) air pollution at 332 locations in the United States. Each file contains data from a single monitor and the ID number for each monitor is contained in the file name. For example, data for monitor 200 is contained in the file “200.csv”. Each file contains three variables:
- Date: the date of the observation in YYYY-MM-DD format (year-month-day)
- sulfate: the level of sulfate PM in the air on that date (measured in micrograms per cubic meter)
- nitrate: the level of nitrate PM in the air on that date (measured in micrograms per cubic meter)
For this programming assignment you will need to unzip this file and create the directory ‘specdata’. Once you have unzipped the zip file, do not make any modifications to the files in the ‘specdata’ directory. In each file you’ll notice that there are many days where either sulfate or nitrate (or both) are missing (coded as NA). This is common with air pollution monitoring data in the United States.
Part 1
pollutantmean <- function(directory, pollutant, id = 1:332) {
## 'directory' is a character vector of length 1 indicating
## the location of the CSV files
## 'pollutant' is a character vector of length 1 indicating
## the name of the pollutant for which we will calculate the
## mean; either "sulfate" or "nitrate".
## 'id' is an integer vector indicating the monitor ID numbers
## to be used
## Return the mean of the pollutant across all monitors list
## in the 'id' vector (ignoring NA values)
## NOTE: Do not round the result!
}
You can see some example output from this function. The function that you write should be able to match this output. Please save your code to a file named pollutantmean.R.
Part 2
Write a function that reads a directory full of files and reports the number of completely observed cases in each data file. The function should return a data frame where the first column is the name of the file and the second column is the number of complete cases. A prototype of this function follows
complete <- function(directory, id = 1:332) {
## 'directory' is a character vector of length 1 indicating
## the location of the CSV files
## 'id' is an integer vector indicating the monitor ID numbers
## to be used
## Return a data frame of the form:
## id nobs
## 1 117
## 2 1041
## ...
## where 'id' is the monitor ID number and 'nobs' is the
## number of complete cases
}
ou can see some example output from this function. The function that you write should be able to match this output. Please save your code to a file named complete.R. To run the submit script for this part, make sure your working directory has the file complete.R in it.
Part 3
Write a function that takes a directory of data files and a threshold for complete cases and calculates the correlation between sulfate and nitrate for monitor locations where the number of completely observed cases (on all variables) is greater than the threshold. The function should return a vector of correlations for the monitors that meet the threshold requirement. If no monitors meet the threshold requirement, then the function should return a numeric vector of length 0. A prototype of this function follows
corr <- function(directory, threshold = 0) {
## 'directory' is a character vector of length 1 indicating
## the location of the CSV files
## 'threshold' is a numeric vector of length 1 indicating the
## number of completely observed observations (on all
## variables) required to compute the correlation between
## nitrate and sulfate; the default is 0
## Return a numeric vector of correlations
## NOTE: Do not round the result!
}
For this function you will need to use the ‘cor’ function in R which calculates the correlation between two vectors. Please read the help page for this function via ‘?cor’ and make sure that you know how to use it.
You can see some example output from this function. The function that you write should be able to match this output. Please save your code to a file named corr.R. To run the submit script for this part, make sure your working directory has the file corr.R in it.
--------------------------------------------------------------作答區------------------------------------------------------------------------
可以直接點選連結下載檔案再行解壓縮
或是自訂R的 get_specdata()函數來執行上述步驟
# 設立get_specdata()
get_specdata <- function(dest_file) {
specdata_url <- "https://storage.googleapis.com/jhu_rprg/specdata.zip" #擷取檔案下載的url
download.file(specdata_url, destfile = dest_file) #以download.file下載,destfile = 指定位置 *註:此處~會為R主程式的wd
unzip(dest_file) #unzip檔案至Rstudio的wd
}
get_specdata("~/specdata.zip") #可指定解壓位置的get_specdata()
get_specdata <- function(dest_file, ex_dir) {
specdata_url <- "https://storage.googleapis.com/jhu_rprg/specdata.zip"
download.file(specdata_url, destfile = dest_file)
unzip(dest_file, exdir = ex_dir) #exdir為指定位置*註:此處~會為R主程式的wd
}
get_specdata("~/specdata.zip", "D:/R/Project")
pollutantmean()
pollutantmean <- function(directory,pollutant,id = 1:332) {
CSV_files_dir <- list.files(directory, full.names = T) #將茲目標料夾中的files,匯成list
dataf <-data.frame()
for(i in id){
dataf <- rbind(dataf,read.csv(CSV_files_dir[i])) #rbind將for迴圈的資料綁成新row
}
mean(dataf[,pollutant],na.rm = T) #所有row的 指定column做計算
}
另一種參考
pollutantmean <- function(directory, pollutant, id= 1:332){
pollutants = c() #設立空vector用於接數據
filenames = list.files(directory) #此處沒有用 full_name參數,只會有files name
for(i in id){
filepath=paste(directory,"/" ,filenames[i], sep="") #將檔名與路徑貼起來,製成完整路徑fliepath
data = read.csv(filepath, header = TRUE) #讀取目標檔案及其header,存至data
pollutants = c(pollutants, data[,pollutant]) #將每筆數據加長至vector中,存至pollutants
}
pollutants_mean = mean(pollutants, na.rm=TRUE) #計算並存至pollutants_mean
pollutants_mean #回報
}
練習
pollutantmean("specdata", "sulfate", 1:10)
[1] 4.064
pollutantmean("specdata", "nitrate", 70:72)
[1] 1.706
pollutantmean("specdata", "sulfate", 34)
[1] 1.477
pollutantmean("specdata", "nitrate")
[1] 1.703
complete()
complete <- function(directory, id = 1:332) {
CSV_files <- list.files(directory, full.names = TRUE)
datadf <- data.frame()
for (i in id) {
moni_i <- read.csv(CSV_files[i])
nobs <- sum(complete.cases(moni_i)) #complete.cases()可得是否為complete的邏輯vector,sum()加總True值
tmpdf <- data.frame(i, nobs) #將測站ID及其結果存成 df
datadf <- rbind(datadf, tmpdf) #將新的資料綁至新row
}
colnames(datadf) <- c("id", "nobs") #將column賦名
datadf #回報
}
輸出data frame
練習
查看指定感測器中,具有完整資訊的筆數
cc <- complete("specdata", c(6, 10, 20, 34, 100, 200, 310)) #cc5中有"id" "nobs" 兩columns
print(cc$nobs) #nobs的 vector [1] 228 148 124 165 104 460 232
查看指定感測器中,具有完整資訊的筆數
cc <- complete("specdata", 54) #cc中有"id" "nobs" 兩columns
print(cc$nobs) #nobs的 vector
[1] 219
隨機抽樣查看10組感測器,具有完整資訊的筆數
set.seed(42)
cc <- complete("specdata", 332:1) #cc中有 "id" "nobs"兩columns *row是反讀,但此處沒差
use <- sample(332, 10) #332中亂數取10個成 use vector
print(cc[use, "nobs"]) #第 use row 的 "nobs" [1] 711 135 74 445 178 73 49 0 687 237
corr()
corr <- function(directory, threshold = 0) { #門檻defalut = 0
CSV_files <- list.files(directory, full.names = TRUE)
dat <- vector(mode = "numeric", length = 0) #設置空的numeric vector
for (i in 1:length(CSV_files)) {
moni_i <- read.csv(CSV_files[i]) #此處沒有指定id,直接以length讀長度
csum <- sum((!is.na(moni_i$sulfate)) & (!is.na(moni_i$nitrate))) #獲得兩側相都沒na測值的True數量
if (csum > threshold) { #超出門檻的
tmp <- moni_i[which(!is.na(moni_i$sulfate)), ] #留下sulfate是True的
submoni_i <- tmp[which(!is.na(tmp$nitrate)), ] #再留下nitrate是True的
dat <- c(dat, cor(submoni_i$sulfate, submoni_i$nitrate)) #將cor()值綁長至dat vector 中
}
}
dat
}
輸出numeric vector
練習
從排序完成的相關係數中,隨機抽樣5組,並四捨五入至小數點下第四位
cr <- corr("specdata")
cr <- sort(cr)
set.seed(868)
out <- round(cr[sample(length(cr), 5)], 4)
print(out) [1] 0.2688 0.1127 -0.0085 0.4586 0.0447
資料完整數大於129筆的資料組數,其相關係數排序完成後隨機抽樣5組,並四捨五入至小數點下第四位
cr <- corr("specdata", 129)
cr <- sort(cr)
n <- length(cr)
set.seed(197)
out <- c(n, round(cr[sample(n, 5)], 4))
print(out) [1] 243.0000 0.2540 0.0504 -0.1462 -0.1680 0.5969
資料完整度大於2000筆的資料組數,與資料完整度大於1000筆的資料,其相關係數排序完成後以四捨五入呈現至小數點下第四位
cr <- corr("specdata", 2000)
n <- length(cr)
cr <- corr("specdata", 1000)
cr <- sort(cr)
print(c(n, round(cr, 4))) [1] 0.0000 -0.0190 0.0419 0.1901
[R] [Johns Hopkins] R Programming 作業 Week 2 - Air Pollution的更多相关文章
- [R] [Johns Hopkins] R Programming -- week 3
library(datasets) head(airquality) #按月分組 s <- split(airquality, airquality$Month) str(s) summary( ...
- [R] [Johns Hopkins] R Programming -- week 4
#Generating normal distribution (Pseudo) random number x<-rnorm(10) x x2<-rnorm(10,2,1) x2 set ...
- T100——程序从标准签出客制后注意r.c和r.l
标准签出客制后,建议到对应4gl目录,客制目录 r.c afap280_01 r.l afap280_01 ALL 常用Shell操作命令: r.c:编译程序,需在4gl路径之下执行,产生的42m会自 ...
- R语言 启动报错 *** glibc detected *** /usr/lib64/R/bin/exec/R: free(): invalid next size (fast): 0x000000000263a420 *** 错误 解决方案
*** glibc detected *** /usr/lib64/R/bin/exec/R: free(): invalid next size (fast): 0x000000000263a420 ...
- 【R笔记】R语言函数总结
R语言与数据挖掘:公式:数据:方法 R语言特征 对大小写敏感 通常,数字,字母,. 和 _都是允许的(在一些国家还包括重音字母).不过,一个命名必须以 . 或者字母开头,并且如果以 . 开头,第二个字 ...
- [转]2010 Ruby on Rails 書單 與 練習作業
原帖:http://wp.xdite.net/?p=1754 ========= 學習 Ruby on Rails 最快的途徑無非是直接使用 Rails 撰寫產品.而這個過程中若有 mentor 指導 ...
- Python获取爬虫数据, r.text 与 r.content 的区别
1.简单粗暴来讲: text 返回的是unicode 型的数据,一般是在网页的header中定义的编码形式. content返回的是bytes,二级制型的数据. 如果想要提取文本就用text 但是如果 ...
- 判斷作業系統為 64bit 或 32bit z
有時我們在開發Windows 桌面應用程式時,會發生一些弔詭的事情,作業系統位元數就是一個蠻重要的小細節,若您寫的應用程式在Windows 的32bit 作業系統上可以完美的運行,但不見得在64bit ...
- python文件操作打开模式 r,w,a,r+,w+,a+ 区别辨析
主要分成三大类: r 和 r+ "读"功能 r 只读 r+ 读写(先读后写) 辨析:对于r,只有读取功能,利用光标的移动,可以选择要读取的内容. 对于r+,同时具有读和写 ...
随机推荐
- [转]MYSQL 创建存储过程
MySQL 存储过程是从 MySQL 5.0 开始增加的新功能.存储过程的优点有一箩筐.不过最主要的还是执行效率和SQL 代码封装.特别是 SQL 代码封装功能,如果没有存储过程,在外部程序访问数据库 ...
- 小练习_num1
题目:将一个正整数分解质因数.例如:输入90,打印输出90=2*3*3*5. /* 分解质因数 */ import java.util.*; class num1 { public static vo ...
- vue 及sass安装
推荐:https://www.cnblogs.com/Mr--Li/p/7921150.html
- 基本矩张量与strike.dip.rake的对应
basefp1=[ ]; M(,:)=[ ]; basefp2=[ -];M(,:)=[ - ]; basefp3=[ ];M(,:)=[ ]; basefp4=[ -];M(,:)=[ ]; bas ...
- 第十五周翻译-《Pro SQL Server Internals, 2nd edition》
<Pro SQL Server Internals, 2nd edition> 作者:Dmitri Korotkevitch 翻译:赖慧芳 译文: 55-58页 第三章 统计 SQL Se ...
- echarts设置option中的数据对象优化
if(tab.name == 'first'){ myChart.setOption({ legend: { selected:{ [this.playNumber]:true, [this.cove ...
- 马凯军201771010116《面向对象与程序设计Java》第九周学习总结
一.理论知识部分 异常.日志.断言和调试 1.异常:在程序的执行过程中所发生的异常事件,它中断指令的正常执行. 2.Java的异常处理机制可以控制程序从错误产生的位置转移到能够进行错误处理的位置. 3 ...
- Linux中挂载详解以及mount命令用法
转自:https://blog.csdn.net/daydayup654/article/details/78788310 挂载概念 Linux中的根目录以外的文件要想被访问,需要将其“关联”到根目录 ...
- element 多个文件上传多次http请求解决方法
第一步 action="#" 第二步 :auto-upload = "false" 第三步 给元素绑定click事件触发提交方法,注意,把其他没有用的文件都给去 ...
- 微信小程序前端开发踩坑(一)
之前由于不了解微信小程序的整个的运行开发机制,走了很多的弯路,脑子灵光的可能不会遇到,这个主题系列的帖子希望可以帮助到像我一样理解能力慢的孩子. 不论是开发微信小程序还是说学习任何一门编程语言,最重要 ...