版权声明:本文为博主原创文章,欢迎转载,并请注明出处。联系方式:460356155@qq.com

TensorFlow是Google开发的开源的深度学习框架,也是当前使用最广泛的深度学习框架。

一、安装

ubuntu16.04安装TensorFlow很简单:

pip install tensorflow==1.1.0 --user

安装是否成功验证:

>>> import tensorflow as tf
>>> tf.__version__
'1.1.0'
>>> session = tf.Session()
>>> a = tf.constant(100)
>>> b = tf.constant(200)
>>> print(session.run(a+b))
300

二、Mnist训练

定义三层全连接的网络结构:768 × 300 × 10,完整代码如下:

# -*- coding:utf-8 -*-

u"""TensorFlow训练Mnist"""

__author__ = 'zhengbiqing 460356155@qq.com'

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data # 超参数定义
learning_rate = 0.5
epochs = 5000
batch_size = 128 def main():
# 模型定义
# 输入图片为28 x 28 = 784 像素
x = tf.placeholder(tf.float32, [None, 784]) # 输入层---->隐藏层权重及bias初始化
W1 = tf.Variable(tf.random_normal([784, 300], stddev=0.03), name='W1')
b1 = tf.Variable(tf.random_normal([300]), name='b1') # 隐藏层---->输出层权重及bias初始化
W2 = tf.Variable(tf.random_normal([300, 10], stddev=0.03), name='W2')
b2 = tf.Variable(tf.random_normal([10]), name='b2') # 隐藏层输出计算
hidden_out = tf.add(tf.matmul(x, W1), b1)
hidden_out = tf.nn.relu(hidden_out) # 模型输出
model_out = tf.nn.softmax(tf.add(tf.matmul(hidden_out, W2), b2))
# model_out = tf.nn.softmax(model_out) # 交叉熵定义
y = tf.placeholder(tf.int64, [None])
cross_entropy = tf.losses.sparse_softmax_cross_entropy(labels=y, logits=model_out) # 优化器,确定优化目标
optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate).minimize(cross_entropy) # mnist 数据集
mnist = input_data.read_data_sets("MNIST_data/") # 创建session
with tf.Session() as sess:
# session初始化
tf.global_variables_initializer().run(session=sess) # 模型训练
for epoch in range(epochs):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys}) # 测试准确率
if epoch % 50 == 0:
correct = tf.equal(tf.argmax(model_out, 1), y)
accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))
acc = sess.run(accuracy, feed_dict={x: mnist.test.images, y: mnist.test.labels})
print('Epoch:%d, Acc:%f' % (epoch, acc)) if __name__ == '__main__':
main()

运行结果:

zbq@zbq:~/tf$ python tf-minist.py
Extracting MNIST_data/train-images-idx3-ubyte.gz
Extracting MNIST_data/train-labels-idx1-ubyte.gz
Extracting MNIST_data/t10k-images-idx3-ubyte.gz
Extracting MNIST_data/t10k-labels-idx1-ubyte.gz
Epoch:0, Acc:0.097400
Epoch:50, Acc:0.606300
Epoch:100, Acc:0.726400
Epoch:150, Acc:0.745900
Epoch:200, Acc:0.751400
......

Epoch:4800, Acc:0.957200
Epoch:4850, Acc:0.957800
Epoch:4900, Acc:0.958000
Epoch:4950, Acc:0.958700

运行5000个迭代,准确率达到了95%左右,对一个简单的三层全连接网络,该准确率还是不错的。

Ubuntu16.04安装TensorFlow及Mnist训练的更多相关文章

  1. Ubuntu16.04安装tensorflow+安装opencv+安装openslide+安装搜狗输入法

    Ubuntu16.04在cuda以及cudnn安装好之后,安装tensorflow,tensorflow以及opencv可以到网上下载对应的安装包并且直接在安装包所在的路径下直接通过pip与conda ...

  2. ubuntu16.04 使用tensorflow object detection训练自己的模型

    一.构建自己的数据集 1.格式必须为jpg.jpeg或png. 2.在models/research/object_detection文件夹下创建images文件夹,在images文件夹下创建trai ...

  3. ubuntu16.04安装tensorflow官方教程与机器学习资料【学习笔记】

    tensorflow官网有官方的安装教程:https://www.tensorflow.org/install/install_linux google的机器学习官方快速入门教程:https://de ...

  4. Ubuntu16.04安装TensorFlow

    1.查看tensoflow与CUDA对应版本: windows端:https://tensorflow.google.cn/install/source_windows Linux端:https:// ...

  5. ubuntu16.04 安装cuda9.0+cudnn7.0.5+tensorflow+nvidia-docker配置GPU服务

    [摘要] docker很好用,但是在GPU服务器上使用docker却比较复杂,需要一些技巧,下面将介绍一下在ubuntu16.04环境下的GPU-docker环境搭建过程. 第一步: 删除之前的nvi ...

  6. Ubuntu16.04安装配置和使用ctags

    Ubuntu16.04安装配置和使用ctags by ChrisZZ ctags可以用于在vim中的函数定义跳转.在ubuntu16.04下默认提供的ctags是很老很旧的ctags,快要发霉的版本( ...

  7. ubuntu16.04安装jdk,tomcat

    ubuntu16.04安装jdk,tomcat 最近装了一下tomcat,网上的教程很多,我也试了很多次,但是有一些教程关于tomcat配置是错误的,让我走上了歧途.差点重装系统,还好王总及时出手帮助 ...

  8. Ubuntu16.04 安装openjdk-7-jdk

    Ubuntu16.04 安装openjdk-7-jdk sudo apt-get install openjdk-7-jre 或者sudo apt-get install openjdk-7-jdk ...

  9. Ubuntu16.04安装GTK3主题:OSX-Arc

    Ubuntu16.04安装GTK3主题:OSX-Arc GTK3主题:OSX-Arc描述: 前几个月,Gnome3.20升3.22的时候,出现了大量主题崩溃的现象,其中包括Arc.Flatabulou ...

随机推荐

  1. [转]nodeJs--koa2 REST API

    本文转自:https://blog.csdn.net/davidPan1234/article/details/83413958 REST API规范编写REST API,实际上就是编写处理HTTP请 ...

  2. 日志收集ELK+kafka相关博客

    SpringBoot+kafka+ELK分布式日志收集 使用 logstash + kafka + elasticsearch 实现日志监控 Kibana 安装 与 汉化 windows系统安装运行f ...

  3. You are what you write——沈向洋

    title: You are what you write--沈向洋 date: 2018-02-21 13:18:28 tags: [随想,write] categories: 个人文章 --- A ...

  4. java SPI机制

    1. SPI是Service Provider Interfaces的简称.根据Java的SPI规范,我们可以定义一个服务接口,具体的实现由对应的实现者去提供,即Service Provider(服务 ...

  5. 【转】Js正则表达式

    //校验是否全由数字组成 var patrn=/^[0-9]{1,20}$/ //校验登录名:只能输入5-20个以字母开头.可带数字.“_”.“.”的字串 var patrn=/^[a-zA-Z]{1 ...

  6. TS学习随笔(六)->断言

    now,我们来看一看TS里面的断言,听起来很上档次啊,其实看完你就发出惊叹,这就是断言啊 类型断言 类型断言(Type Assertion)可以用来手动指定一个值的类型 语法 <类型>值 ...

  7. 用WijmoJS搭建您的前端Web应用 —— React

    前文回顾 在本系列文章中,我们已经介绍了Angular和Vue框架下 WijmoJS 的玩法. 而今天,我们将展示如何使用 WijmoJS 来搭建一款具备独特创新性.出色性能和简单代码逻辑的 Reac ...

  8. C# 利用SharpZipLib生成压缩包

    本文通过一个简单的小例子简述SharpZipLib压缩文件的常规用法,仅供学习分享使用,如有不足之处,还请指正. 什么是SharpZipLib ? SharpZipLib是一个C#的类库,主要用来解压 ...

  9. Android 通过反射获取DatePicker 中的控件,并改变其颜色

    到最后也只是成功改变了中间部分的颜色. private void setDatePickerDividerColor(DatePicker datePicker) { // Divider chang ...

  10. python爬虫实战:利用scrapy,短短50行代码下载整站短视频

    近日,有朋友向我求助一件小事儿,他在一个短视频app上看到一个好玩儿的段子,想下载下来,可死活找不到下载的方法.这忙我得帮,少不得就抓包分析了一下这个app,找到了视频的下载链接,帮他解决了这个小问题 ...