摘要:一个神经网络有N个样本,经过这个网络把N个样本分为M类,那么此时backward参数的维度应该是【N X M】

正常来说backward()函数是要传入参数的,一直没弄明白backward需要传入的参数具体含义,但是没关系,生命在与折腾,咱们来折腾一下,嘿嘿。


首先,如果out.backward()中的out是一个标量的话(相当于一个神经网络有一个样本,这个样本有两个属性,神经网络有一个输出)那么此时我的backward函数是不需要输入任何参数的。

运行结果:

不难看出,我们构建了这样的一个函数:

所以其求导也很容易看出:

这是对其进行标量自动求导的结果


如果out.backward()中的out是一个向量(或者理解成1xN的矩阵)的话,我们对向量进行自动求导,看看会发生什么?

先构建这样的一个模型(相当于一个神经网络有一个样本,这个样本有两个属性,神经网络有两个输出):

模型也很简单,不难看出out求导出来的雅克比应该是:

,因为a1 = 2,a2 = 4,所以上面的矩阵应该是  

运行的结果:

嗯,的确是8和96,但是仔细想一想,和咱们想要的雅克比矩阵的形式也不一样啊。难道是backward自动把0给省略了?

咱们继续试试,这次在上一个模型的基础上进行小修改,如下:

可以看出这个模型的雅克比应该是:

运行一下,看是不是:

等等,什么鬼?正常来说不应该是  [ [ 8 , 2 ] , [ 2 , 96 ] ]么?

我是谁?我再哪?

为什么就给我2个数,而且是  8 + 2 = 10 ,96 + 2 = 98 。难道都是加的 2 ?

想一想,刚才咱们backward中传的参数是 [ [ 1 , 1 ] ],难道安装这个关系对应求和了?

咱们换个参数来试一试,程序中只更改传入的参数为[ [ 1 , 2 ] ]:

运行一下:

嗯,这回可以理解了,我们传入的参数,是对原来模型正常求导出来的雅克比矩阵进行线性操作,可以把我们传进的参数(设为arg)看成一个列向量,那么我们得到的结果就是(注意这里是矩阵乘法,为了好表示我用了*):

( Jacobi * arg )T

在这个题里,我们得到的实际是:

看起来一切完美的解释了,但是就在我刚刚打字的一刻,我意识到官方文档中说k.backward()传入的参数应该和k具有相同的维度,所以如果按上述去解释是解释不通的。

哪里出问题了呢?

仔细看了一下,原来是这样的:在对雅克比矩阵进行线性操作的时候,应该把我们传进的参数(设为arg)看成一个行向量(不是列向量),那么我们得到的结果就是(注意这里是矩阵乘法,为了好表示我用了*):

  ( arg * Jacobi )T

这回我们就解释的通了。

现在我们来输出一下雅克比矩阵吧,为了不引起歧义,我们让雅克比矩阵的每个数值都不一样(一开始分析错了就是因为雅克比矩阵中有相同的数据),所以模型小改动如下:

如果没问题的话咱们的雅克比矩阵应该是 [ [ 8 , 2 ] , [ 4 , 96 ] ]

好了,下面是见证奇迹的时刻了,不要眨眼睛奥,千万不要眨眼睛......

3

2

1

砰............

好了,现在总结一下:因为经过了复杂的神经网络之后,out中每个数值都是由很多输入样本的属性(也就是输入数据)线性或者非线性组合而成的,那么out中的每个数值和输入数据的每个数值都有关联,也就是说【out】中的每个数都可以对【a】中每个数求导,那么我们backward()的参数[k1,k2,k3....kn]的含义就是:

   

也可以理解成每个out分量对an求导时的权重。


现在,如果out是一个矩阵呢?

下面的例子也可以理解为:相当于一个神经网络有两个样本,每个样本有两个属性,神经网络有两个输出.

如果前面的例子理解了,那么这个也很好理解,backward输入的参数k是一个2x1的矩阵,2代表的就是样本数量,就是在前面的基础上,再对每个样本进行加权求和。

结果是:

如果有兴趣,也可以拓展一下多个样本的多分类问题,猜一下k的维度应该是【输入样本的个数 X 分类的个数】

好啦,纠结我好久的pytorch自动求导原理算是彻底搞懂啦~~~

Pytorch中的自动求导函数backward()所需参数含义的更多相关文章

  1. Pytorch中的自动求梯度机制和Variable类

    自动求导机制是每一个深度学习框架中重要的性质,免去了手动计算导数,下面用代码介绍并举例说明Pytorch的自动求导机制. 首先介绍Variable,Variable是对Tensor的一个封装,操作和T ...

  2. 什么是pytorch(2Autograd:自动求导)(翻译)

    Autograd: 自动求导 pyTorch里神经网络能够训练就是靠autograd包.我们来看下这个包,然后我们使用它来训练我们的第一个神经网络. autograd 包提供了对张量的所有运算自动求导 ...

  3. Pytorch Tensor, Variable, 自动求导

    2018.4.25,Facebook 推出了 PyTorch 0.4.0 版本,在该版本及之后的版本中,torch.autograd.Variable 和 torch.Tensor 同属一类.更确切地 ...

  4. pytorch中torch.nn构建神经网络的不同层的含义

    主要是参考这里,写的很好PyTorch 入门实战(四)--利用Torch.nn构建卷积神经网络 卷积层nn.Con2d() 常用参数 in_channels:输入通道数 out_channels:输出 ...

  5. Pytorch Autograd (自动求导机制)

    Pytorch Autograd (自动求导机制) Introduce Pytorch Autograd库 (自动求导机制) 是训练神经网络时,反向误差传播(BP)算法的核心. 本文通过logisti ...

  6. 深度学习之PyTorch实战(2)——神经网络模型搭建和参数优化

    上一篇博客先搭建了基础环境,并熟悉了基础知识,本节基于此,再进行深一步的学习. 接下来看看如何基于PyTorch深度学习框架用简单快捷的方式搭建出复杂的神经网络模型,同时让模型参数的优化方法趋于高效. ...

  7. PyTorch官方中文文档:自动求导机制

    自动求导机制 本说明将概述Autograd如何工作并记录操作.了解这些并不是绝对必要的,但我们建议您熟悉它,因为它将帮助您编写更高效,更简洁的程序,并可帮助您进行调试. 从后向中排除子图 每个变量都有 ...

  8. Pytorch学习(一)—— 自动求导机制

    现在对 CNN 有了一定的了解,同时在 GitHub 上找了几个 examples 来学习,对网络的搭建有了笼统地认识,但是发现有好多基础 pytorch 的知识需要补习,所以慢慢从官网 API进行学 ...

  9. ARTS-S pytorch中backward函数的gradient参数作用

    导数偏导数的数学定义 参考资料1和2中对导数偏导数的定义都非常明确.导数和偏导数都是函数对自变量而言.从数学定义上讲,求导或者求偏导只有函数对自变量,其余任何情况都是错的.但是很多机器学习的资料和开源 ...

随机推荐

  1. 转://看懂Oracle中的执行计划

    一.什么是Oracle执行计划? 执行计划是一条查询语句在Oracle中的执行过程或访问路径的描述 二.怎样查看Oracle执行计划? 2.1 explain plan for命令查看执行计划 在sq ...

  2. Filebeat配置参考手册

    Filebeat的配置参考 指定要运行的模块 前提: 在运行Filebeat模块之前,需要安装并配置Elastic堆栈: 安装Ingest Node GeoIP和User Agent插件.这些插件需要 ...

  3. UUID简记

    一.概述 wiki上的解释: A universally unique identifier (UUID) is a 128-bit number used to identify informati ...

  4. CF438E The Child and Binary Tree 生成函数、多项式开根

    传送门 设生成函数\(C(x) = \sum\limits_{i=0}^\infty [\exists c_j = i]x^i\),答案数组为\(f_1 , f_2 , ..., f_m\),\(F( ...

  5. Math的一些方法

    Math.abs(数值) 把()内的值变为正数 Math.ceil(4.3) 向上取整 // 5 Math.floor(4.3) 向下取整 // 4 Math.round(4.3) 四舍五入取整 // ...

  6. 有关python2与python3中关于除的不同

    有关python2与python3中关于除的不同 python中2版本与3版本关于除的处理还是有一些差异的. 在python 2.7.15中除(/)是向下取整的,即去尾法. 123/10 # 结果 1 ...

  7. python多线程和多进程

    1 概念梳理: 1.1 线程 1.1.1 什么是线程 线程是操作系统能够进行运算调度的最小单位.它被包含在进程之中,是进程中的实际运作单位.一条线程指的是进程中一个单一顺序的控制流,一个进程中可以并发 ...

  8. Django(一) 安装使用基础

    大纲 安装Django 1.创建Django工程 2.创建Django app 3.写一个简单的登录注册相应页面 4.获取用户请求信息并处理 5.前后端交互 6.Django 请求 生命周期  跳转到 ...

  9. vue服务器端渲染

    Vue.js 是构建客户端应用程序的框架.默认情况下,可以在浏览器中输出 Vue 组件,进行生成 DOM 和操作 DOM.然而,也可以将同一个组件渲染为服务器端的 HTML 字符串,将它们直接发送到浏 ...

  10. angular4 数据绑定

    HTML属性绑定 1.基本Html属性绑定 <td [attr.colspan]="tableColspan">something</td> 2.css类绑 ...