乘积型Sobolev不等式
(Multiplicative Sobolev inequality). Let $\mu,\lambda$ and $\gamma$ be three parameters that satisfy $$\bex 1\leq \mu,\lm<\infty,\quad \frac{2}{\lm}+\frac{1}{\mu}>1\quad\mbox{and}\quad 1+\frac{3}{\gamma}=\frac{2}{\lm}+\frac{1}{\mu}. \eex$$ Assume $\phi\in H^1(\bbR^3)$, $\p_1\phi$, $\p_2\phi\in L^\lm(\bbR^3)$, $\p_3\phi\in L^\mu(\bbR^3)$. Then, there exists a constant $C=C(\mu,\lm)$ such that $$\bex \sen{\phi}_\gamma\leq C\sen{\p_1\phi}_{L^\lm}^\frac{1}{3} \sen{\p_2\phi}_{L^\lm}^\frac{1}{3} \sen{\p_3\phi}_{L^\mu}^{\frac{1}{3}}. \eex$$
Reference:
C.S. Cao, J.H. Wu, Two regularity criteria for the $3$D MHD equations, J. Differential Equations, 248 (2010), 2263--2274.
乘积型Sobolev不等式的更多相关文章
- [再寄小读者之数学篇](2014-10-08 乘积型 Sobolev 不等式)
$$\bex n\geq 2, 1\leq p<n\ra \sen{f}_{L^\frac{np}{n-p}(\bbR^n)} \leq C\prod_{k=1}^n \sen{\p_k f}_ ...
- BZOJ做题记录[0512~?]
觉得做一道开一篇真不好...好多想找的东西都被刷下去了... 至于?的日期究竟到什么时候...还是看心情...但是估计不会超过七天吧 最后更新时间:05/19 10:42 [05/14 10:56]我 ...
- CPN tools 帮助文档资料和实例
1.替代变迁 包含有替代变迁的页面叫做父页,当CPN网使用替代变迁的时候,替代变迁所表达的逻辑必须在某一个位置得到实现,实现替代变迁逻辑页面叫做子页或者子网. 将替代变迁相邻的库所叫做槽库所,也即是在 ...
- Dataphin的代码自动化能力如何助力商业决策
前言 随着大数据趋势的迅速增长,数据的重要性与日俱增,企业内看数据.用数据的诉求越来越强烈,其中最常见的就是各种经营报表数据:老板每日早晨9点准时需要看到企业核心的经营数据,以便进行企业战略及方向决策 ...
- IMO 1977 第 2 题探析
原题:在一个有限的实数数列中,任意 7 个连续项之和为负数,且任意 11 个连续项之和为正数.求这个数列最多有多少项. 解法一:记这个数列为 a1, a2, ..., ak,问题等价于求 k 的最大值 ...
- Codevs_1017_乘积最大_(划分型动态规划/记忆化搜索)
描述 http://codevs.cn/problem/1017/ 给出一个n位数,在数字中间添加k个乘号,使得最终的乘积最大. 1017 乘积最大 2000年NOIP全国联赛普及组NOIP全国联赛提 ...
- RQNOJ 311 [NOIP2000]乘积最大:划分型dp
题目链接:https://www.rqnoj.cn/problem/311 题意: 给你一个长度为n的数字,用t个乘号分开,问你分开后乘积最大为多少.(6<=n<=40,1<=k&l ...
- Gronwall型不等式
Problem. Suppose $x(t)\in C[0,T]$, and satisfies $$\bex t\in [0,T]\ra 1\leq x(t)\leq C_1+C_2\int_0^t ...
- 数理统计9:完备统计量,指数族,充分完备统计量法,CR不等式
昨天我们给出了统计量是UMVUE的一个必要条件:它是充分统计量的函数,且是无偏估计,但这并非充分条件.如果说一个统计量的无偏估计函数一定是UMVUE,那么它还应当具有完备性的条件,这就是我们今天将探讨 ...
随机推荐
- 算法"新"名词
这个“新”是对于自己而言. 最近几天接触到很多新的名词,如: 回溯法(backtracking):以前知道,但很少用 动态规划(dynamic programming):序列型.矩阵型.区间型.背包等 ...
- SpringCloud 学习网址记录
SpringCloud Gateway https://www.cnblogs.com/ityouknow/p/10141740.html 熔断降级的概念 https://blog.csdn.net/ ...
- UVALive - 3211 - Now or later(图论——2-SAT)
Problem UVALive - 3211 - Now or later Time Limit: 9000 mSec Problem Description Input Output Sampl ...
- Generative Adversarial Nets[BEGAN]
本文来自<BEGAN: Boundary Equilibrium Generative Adversarial Networks>,时间线为2017年3月.是google的工作. 作者提出 ...
- HNOI2019做题笔记
代码比较长所以直接去LOJ看吧- 鱼(计算几何.向量) 比较套路的内容:枚举\(D\),对于其他所有点按照\(D\)极角排序,按照极角序枚举\(A\),这样垂直于\(AD\)的线也会以极角序旋转,可以 ...
- 在Bootstrap开发框架中使用dataTable直接录入表格行数据(2)--- 控件数据源绑定
在前面随笔<在Bootstrap开发框架中使用dataTable直接录入表格行数据>中介绍了在Web页面中使用Jquery DataTable插件进行对数据直接录入操作,这种处理能够给用户 ...
- Python-序列号和模块复习-64
# 序列化模块 # 数据类型转化成字符串的过程就是序列化 # 为了方便存储和网络传输 # json # dumps # loads # dump 和文件有关 # load load不能load多次 i ...
- Shell命令-文件及内容处理之wc,tr
文件及内容处理 - wc.tr 1. wc:统计文件的行数.单词数或字节数 wc命令的功能说明 wc 命令用于计算字数.利用 wc 指令我们可以计算文件的字节数,字数,或是列数,若不指定文件名称,或是 ...
- JSON.stringify()的不常见用法
1.JSON.stringify()只序列化可遍历属性(enumerable=true) var obj = {}; Object.defineProperties(obj, { 'foo': { v ...
- Qt中实现将float类型转换为QString类型
在使用Qt Creator编程时,难免会用到将float类型转换为QString类型的时候下面是我所有的方法: 1. 将QString类型转化为float类型,很简单 QString data; fl ...