多重背包问题II
多重背包问题II
总体积是m,每个小物品的体积是A[i] ,每个小物品的数量是B[i],每个小物品的价值是C[i]
求能够放入背包内的最大物品能够获得的最大价值
和上一个很类似
上一题体积就是价值,这里的价值是单独定义了
状态转移方程
不放A[i]
f[i][j] =f[i-1][j]
放A[j]
可放多个设为k,
k = min(j/A[i],B[i])
f[i][j] = f[i-1][j- ki*A[i]] + ki*C[i] 0<=ki<=k 取最大值
完全背包问题时候:0<=ki*A[i]<=m
public class Solution {
public int backPack(int m, int[] A,int[] B ,int[] C) {
// write your code here
int[] P = new int[m+1];// P[i][j] 前i个物品放在j的空间中的最大价值
for(int i = 0;i< A.length; i++){
for(int j = m;j>=1;j--){
if(j>=A[i]){
int k = j/A[i];// 该物品最大可以放k个,然而限制条件最大是B[i]
k = Math.min(k,B[i]);// 取最小值
while(k>=0){
if(j>=A[i]*k){
P[j] =Math.max(P[j], P[j-k*A[i]] + k*C[i]);
}
k--;
}
} else
P[j] = Math.max(P[j],P[j]);
}
}
return P[m];
}
/**
* 多重背包问题
* 总体积是m,每个小物品的体积是A[i] ,每个小物品的数量是B[i]
*
* @param m: An integer m denotes the size of a backpack
* @param A: Given n items with size A[i] 0 开始的 A是
* @return: The maximum size
*/
public int backPack1(int m, int[] A,int[] B ,int[] C) {
// write your code here
int[][] P = new int[A.length+1][m+1];// P[i][j] 前i个物品放在j的空间中的最大价值
for(int i = 0;i< A.length; i++){
for(int j = m;j>=1;j--){
if(j>=A[i]){
int k = j/A[i];// 该物品最大可以放k个,然而限制条件最大是B[i]
k = Math.min(k,B[i]);// 取最小值
while(k>=0){
if(j>=A[i]*k){
P[i+1][j] =Math.max(P[i+1][j], P[i][j-k*A[i]] + k*C[i]);
}
k--;
}
} else
P[i+1][j] = Math.max(P[i][j],P[i+1][j]);
}
}
return P[A.length][m];
}
public static void main(String[] args){
int m = 10;//100;//
int[] A=new int[]{1,2,3,4};
int[] B=new int[]{2,3,1,4};
int[] C=new int[]{2,13,4,2};
int sum = new Solution().backPack(m, A,B,C);
System.out.println(sum);
}
}
10:45
100:55
多重背包问题II的更多相关文章
- 5. 多重背包问题 II 【用二进制优化】
多重背包问题 II 描述 有 NN 种物品和一个容量是 VV 的背包. 第 ii 种物品最多有 sisi 件,每件体积是 vivi,价值是 wiwi. 求解将哪些物品装入背包,可使物品体积总和不超过背 ...
- AcWing 5. 多重背包问题 II
//二进制优化 最后变为01背包 #include <iostream> #include <algorithm> using namespace std; , M = ; i ...
- 4. 多重背包问题 I
多重背包问题 I 描述 有 NN 种物品和一个容量是 VV 的背包. 第 ii 种物品最多有 sisi 件,每件体积是 vivi,价值是 wiwi. 求解将哪些物品装入背包,可使物品体积总和不超过背包 ...
- 【动态规划】简单背包问题II
问题 B: [动态规划]简单背包问题II 时间限制: 1 Sec 内存限制: 64 MB提交: 21 解决: 14[提交][状态][讨论版] 题目描述 张琪曼:“为什么背包一定要完全装满呢?尽可能 ...
- 多重背包问题:悼念512汶川大地震遇难同胞——珍惜现在,感恩生活(HDU 2191)(二进制优化)
悼念512汶川大地震遇难同胞——珍惜现在,感恩生活 HDU 2191 一道裸的多重背包问题: #include<iostream> #include<algorithm> #i ...
- O(V*n)的多重背包问题
多重背包问题: 有n件物品,第i件价值为wi,质量为vi,有c1件,问,给定容量V,求获得的最大价值. 朴素做法: 视为0,1,2,...,k种物品的分组背包 [每组只能选一个] f[i][j]=Ma ...
- lintcode:背包问题II
背包问题II 给出n个物品的体积A[i]和其价值V[i],将他们装入一个大小为m的背包,最多能装入的总价值有多大? 注意事项 A[i], V[i], n, m均为整数.你不能将物品进行切分.你所挑选的 ...
- 多重背包问题的两种O(M*N)解法
多重背包的题目很多,最著名的是poj1742楼教主的男人八题之一. poj1742:coins 有几种面值的钱币和每种的数量,问能够组成m以内的多少种钱数 这个题大家都归为多重背包问题,不过跟实际意义 ...
- 【动态规划/多重背包问题】POJ1014-Dividing
多重背包问题的优化版来做,详见之前的动态规划读书笔记. dp[i][j]表示前i中数加得到j时第i种数最多剩余几个(不能加和得到i的情况下为-1)递推式为: dp[i][j]=mi(dp[i-1][j ...
随机推荐
- Nginx Gzip 压缩配置
Nginx Gzip 压缩配置 随着nginx的发展,越来越多的网站使用nginx,因此nginx的优化变得越来越重要,今天我们来看看nginx的gzip压缩到底是怎么压缩的呢? gzip(GNU-Z ...
- iOS8 无法设置定位服务
针对iOS8系统,需要在plist文件中添加这两个参数 NSLocationAlwaysUsageDescription = YES NSLocationWhenInUseUsageDescripti ...
- jquery介绍
1.jQuery (1)jQuery简介 是一个js框架(.js文件),它的最大特点是,使用选择器( 借鉴了css选择器的语法)查找要操作的节点,并且将这些 节点封装成一个jQuery对象,通过调用j ...
- 不变性、协变性和逆变性(Invariance, Covariance & Contravariance)
源码下载 一.里氏替换原则(Liskov Substitution Principle LSP) 我们要讲的不是协变性和逆变性(Covariance & Contravariance)吗?是的 ...
- JavaScript显示输出
记得c语言里的printf和java里的println吗,那么在JavaScript中怎么实现同样的功能呢 window.onload = function() { var para = docume ...
- 三、freemarker数据、模版指令
数据类型 1. 直接指定值(字符串.数值.布尔值.集合.Map对象) 2. 字符串:直接指定字符串使用单引号.双引号,字符中间可以使用转义符“\”,如果字符内有大量特殊 ...
- android 图片缩放抗锯齿
之前用的时候只设置了antialias属性,其实要设置两个flag才行 paint.setFlags(Paint.ANTI_ALIAS_FLAG|Paint.FILTER_BITMAP_FLAG); ...
- 在线自动下载最新版本jquery
<script src="http://code.jquery.com/jquery-latest.js">
- 【python】正则表达式
参考资料:http://deerchao.net/tutorials/regex/regex.htm 1.正则表达式基础 2.python 正则表达式 1.正则表达式基础 元字符: 其他语法: (1) ...
- JSP Workshop
http://www.cnblogs.com/ITtangtang/p/4126395.html 发现http://www.tutorialspoint.com/里的资料很全也很不错啊! 资料:htt ...