Hinge Loss 解释

SVM 求解使通过建立二次规划原始问题,引入拉格朗日乘子法,然后转换成对偶的形式去求解,这是一种理论非常充实的解法。这里换一种角度来思考,在机器学习领域,一般的做法是经验风险最小化 ERM ,即构建假设函数为输入输出间的映射,然后采用损失函数来衡量模型的优劣。求得使损失最小化的模型即为最优的假设函数,采用不同的损失函数也会得到不同的机器学习算法,比如这里的主题 SVM 采用的是 Hinge Loss ,Logistic Regression 采用的则是负 $\log$ 损失,

\[L(Y,P(Y|X)) = - \log P(Y|X)\]

从二项分布的角度来考虑 Logistic 回归:

\begin{aligned}
P(Y=1|X) &= \frac{1}{1 + e^{- \theta x}}\\
P(Y=0|X) &= 1- P(Y=1|X)
\end{aligned}

这里另 $z = \theta^Tx$ ,  $\delta$ 为 sigmod 映射,则:

\[E(z) = - \log (\delta(z)) \]

$E(z)$ 的图形如下图的红色曲线,可见 $z$ 越接近 1 , $E(z)$ 的取值越小,即损失越小。反之另:

\[E(z) = 1- \log (\delta(z)) \]

此时得到的图像应该为关于 $E(z)$ 对称的红色的线(没画出),此时 $z$ 越接近 -1,$E(z)$ 的取值越小,即损失越小。

: 图中绿色的线为 square loss ,蓝色的线为 hinge loss, 红的的线为负 log 损失。
2.1 二分类问题

给定数据集  $T = \left \{ (x_i,y_i)\right \}_{i=1}^N $ , 要用这些数据做一个线性分类器,即求得最优分离超平面 $w\cdot x + b = 0$ 来将样本分为正负两类,给定数据集后只需求得最优的参数  $w , b$ 即可,为了解决这个问题,首先做出如下线性映射函数

\[y = w \cdot x + b\]

根据经验风险最小化原则, 这里引入二分类的 Hinge Loss :

\[max(0, 1- y_i(w \cdot x_i + b))\]

上图中对应的 $E(z) = max(0,1-z)$ ,所以SVM可以通过直接最小化如下损失函数二求得最优的分离超平面:

\[ \min_{w,b} \sum_{i=1}^N max(0, 1- y_i(w \cdot x_i + b)) + \lambda ||w||^2 \]

2.2 多分类问题

对于多分类问题,现在要用这些数据做一个 k 类的线性分类器 ,现在需要优化的参数变为 $W ,b$ , 此时的 $W \in \mathbb{R} ^{k \times n}$,为一个 $k \times n$ 的矩阵,$b \in \mathbb{R}^k$ 为一个向量,现在的映射关系如下 :$s =W x_i +b$,此时有 $s \in \mathbb{R}^k$  ,$s$ 中的每个分量代表分类器在该类别的得分,样本 $x_i$ 的标签  $y_i \in \mathbb{R}^k$ , 这里若 $x_i$ 属于类别 $k$ ,则 $y_i$ 中除了第 $k$ 个分量外其余元素全为 0 ,比如 5 分类问题, $x_i$  属于第 3 类,则有  $y_i = [0,0,1,0,0]$  , 用 $s_j$ 表示得分向量 $s$ 中的第 $j$ 个分量 , $s_{y_i}$ 表示对应 $y_i = 1$ 的分量,则单个样本多分类的Hinge Loss可表示为:

\[\sum_{j \ne y_i} max(0,s_j - s_{y_i} + 1)\],

所以 $k$ 分类线性分类SVM 的 Hinge Loss表示为:

\[\min_{W,b} \sum_{i=1}^N\sum_{j \ne y_i} max(0,s_j - s_{y_i} + 1) + \lambda \sum_k \sum_nW_{k,n}^2\]

支持向量机之Hinge Loss 解释的更多相关文章

  1. SVM(支持向量机)之Hinge Loss解释

    Hinge Loss 解释 SVM 求解使通过建立二次规划原始问题,引入拉格朗日乘子法,然后转换成对偶的形式去求解,这是一种理论非常充实的解法.这里换一种角度来思考,在机器学习领域,一般的做法是经验风 ...

  2. 损失函数 hinge loss vs softmax loss

    1. 损失函数 损失函数(Loss function)是用来估量你模型的预测值 f(x) 与真实值 Y 的不一致程度,它是一个非负实值函数,通常用 L(Y,f(x)) 来表示. 损失函数越小,模型的鲁 ...

  3. 机器学习中的损失函数 (着重比较:hinge loss vs softmax loss)

    https://blog.csdn.net/u010976453/article/details/78488279 1. 损失函数 损失函数(Loss function)是用来估量你模型的预测值 f( ...

  4. Hinge Loss、交叉熵损失、平方损失、指数损失、对数损失、0-1损失、绝对值损失

    损失函数(Loss function)是用来估量你模型的预测值 f(x) 与真实值 Y 的不一致程度,它是一个非负实值函数,通常用 L(Y,f(x)) 来表示.损失函数越小,模型的鲁棒性就越好. 损失 ...

  5. logistic regression svm hinge loss

    二类分类器svm 的loss function 是 hinge loss:L(y)=max(0,1-t*y),t=+1 or -1,是标签属性. 对线性svm,y=w*x+b,其中w为权重,b为偏置项 ...

  6. TransH中的Hinge Loss Function

    Hinge Loss Function Hinge Loss 函数一种目标函数,有时也叫max-margin objective. 在Trans系列中,有一个 \[ \max(0,f(h,r,t) + ...

  7. 有关马氏距离和hinge loss的学习记录

    关于度量学习,之前没有看太多相关的文献.不过南京的周老师的一篇NIPS,确实把这个问题剖析得比较清楚. Mahalanobis距离一般表示为d=(x-y)TM(x-y),其中x和y是空间中两个样本点, ...

  8. Hinge Loss

    http://blog.csdn.net/luo123n/article/details/48878759 https://en.wikipedia.org/wiki/Hinge_loss       ...

  9. 机器学习之十一问支持向量机(SVM)

    推导了支持向量机的数学公式后,还需要对比和总结才能更深入地理解这个模型,所以整理了十一个关于支持向量机的问题. 第一问:支持向量机和感知机(Perceptron)的联系? 1.相同点: 都是一种属于监 ...

随机推荐

  1. java基础知识回顾之javaIO类---BufferedReader和BufferedWriter

    使用了装饰设计模式:此类的设计是为了提高流操作数据的效率.思想就是定义容器将数据进行临时存储,对于缓冲区对象,其实就是将这个容器进行了分装,并提供了更高效的操作方法. BufferReader: pa ...

  2. HDU 1392 Surround the Trees (Graham求凸包周长)

    题目链接 题意 : 让你找出最小的凸包周长 . 思路 : 用Graham求出凸包,然后对每条边求长即可. Graham详解 #include <stdio.h> #include < ...

  3. Newtonsoft.Json.dll

    代码 using System; DoNet2.0 需要借助于Newtonsoft.Json.dll using System.IO; using System.Text; using Newtons ...

  4. java.lang.ClassCastException: sun.jdbc.odbc.JdbcOdbcStatement cannot be cast to java.beans.Statement

    当导入的包为:import java.sql.Statement;时,无任何错误 当导入的包为:import java.beans.Statement;时,出错

  5. C语言运算符优先级表

    优先级 运算符 名称或含义 使用形式 结合方向 说明 1 [] 数组下标 数组名[常量表达式] 左到右   () 圆括号 (表达式)/函数名(形参表)   . 成员选择(对象) 对象.成员名   -& ...

  6. Redis的String操作

    set key value [ex 秒数] / [px 毫秒数] [nx] /[xx] 如: set a 1 ex 10 , 10秒有效 Set a 1 px 9000 , 9秒有效 注: 如果ex, ...

  7. 开发ProxyServer的时候如何在一台PC上调试

    为了测试在真实的网络环境下你的ProxyServer性能如何,而你手头又只有一台电脑,怎么办? 打开你的ProxyServer(我用java写的,因此ProxyServer的进程是javaw.exe) ...

  8. adb 安卓opencv manager报错:adb server is out of date.killing

    原因:ref:http://jingyan.baidu.com/article/d621e8da0dee022865913fce.html      最后发现360mobil.exe占用 5037 通 ...

  9. 利用ExtJS导出Excel

    Ext.ns("Msp.Component"); //config = { // fileName : "净值及头寸核对", // exportDate : & ...

  10. sizeof()与strlen()的区别

    首先需要说明的是sizeof和strlen都可以求长度,但是却有很大的区别,简单来说可以概括为以下几点: 1.sizeof是一个关键字,而strlen确实一个函数. 2.sizeof求的是字节长度,而 ...