Description

Given a connected, undirected graph G = (V, E), where V is the vertex set consisting a collection of nodes, and E is the set of edges, each of which connects two nodes from V. A vertex subset S is a separator if the subgraph induced by the vertices in V, but not in S, has two connected components. We shall use the notation [S, W, B] to represent the partition, where the removal of the separator S will give two connected components W and B.

In this problem, we consider the separators in grids. Each node in a grid is connected to its eight neighbors (if they exist). In Figure-1, we illustrate a partition of a 6*6 grid with a 9-point separator (gray nodes in the figure). The nodes on the left of the separator are in set W (white nodes), and the nodes on the right of the separator are in set B (black nodes). 

To simplify the problem, you can assume that all the separators referred in this problem satisfy the following restrictions: 
1) It’s a minimal separator. A separator is minimal if no subset of it forms a separator. 
2) It begins from a node on the top line of the grid, except the corner (i.e. 30 and 35 in the figures), and ends with a node on the bottom line of the grid, also except the corner (i.e. 0 and 5 in the figures). 
3) On its way from top to bottom, it can go left, right or down, but never go up.

Now we describe a method to improve a given partition on a grid, through which we can reduce the number of nodes in the separator. This method contains two steps: 
1) Select several nodes from B and add them into S. Any of the selected nodes must have a left neighbor which is in S. 
2) Remove several nodes from S (excluding the nodes added in the former step), and add them into W.

After the improvement, we should ensure S is still a separator, and make the number of nodes in S as small as possible. As for Figure-1, we should add 14 and 20 into S, and remove 7, 13, 19 and 25 from S. After that, we obtain a new partition with a 7-point separator shown in Figure-2.

Your task is, given a partition on a grid, to determine the least number of nodes in the separator after the improvement.

Input

There are several test cases. Each case begins with a line containing two integers, N and M (3 <= M, N <= 200). In each of the following N lines, there are M characters, describing the initial partition of the M*N grid. Every character is 'S', 'W' or 'B'. It is confirmed that each of these three characters appears at least once in each line, and 'W's are always on the left of 'S's.

A test case of N = 0 and M = 0 indicates the end of input, and should not be processed.

Output

For each test case, you should output one line containing one integer, which is the least number of nodes in the separator after the improvement.

Sample Input

6 6
WWSBBB
WSSBBB
WSBBBB
WSBBBB
WSSSBB
WWWSBB
0 0

Sample Output

7

【题意】给出一个n*m的矩阵,包含w,s,b,s是分界线,每行每种都至少有一个,B在他的左边是S时能变成S,S无条件可以变成w,求最少的分界线s

【思路】先把能变成S的B全部变成s,然后进行BFS从第一行的S开始,把(0,s)(0,s+1)入队,进行三个方向的搜索下、左、右

#include<iostream>
#include<stdio.h>
#include<queue>
#include<string.h>
using namespace std;
const int inf=0x7777777;
const int N=;
int n,m,ans,s;
char mp[N][N];
int vis[N][N];
int di[][]={,,,,,-};//以左上角为原点,下,右,左开始搜索
struct node
{
int x,y;
int step;
};
bool go(int x,int y)
{
if(x<||x>n-||y<||y>m-) return false;
else return true;
}
void bfs()
{
memset(vis,,sizeof(vis));
queue<node>qu;
node pre,next;
pre.x=,pre.y=s;
pre.step=;
qu.push(pre);
vis[][s]=;
if(s+<m-)
{
pre.x=;pre.y=s+;
pre.step=;
qu.push(pre);
vis[][s+]=;
}
while(!qu.empty())
{
pre=qu.front();
qu.pop();
if(pre.x==n-&&pre.y>&&pre.y<m-)
{
ans=min(ans,pre.step);
}
for(int i=;i<;i++)
{
int xx=pre.x+di[i][];
int yy=pre.y+di[i][];
if(go(xx,yy)&&(!vis[xx][yy])&&mp[xx][yy]=='S')
{
next.x=xx;
next.y=yy;
next.step=pre.step+;
vis[xx][yy]=;
qu.push(next);
}
}
}
}
int main()
{
while(~scanf("%d%d",&n,&m),n||m)
{
for(int i=;i<n;i++)
{
scanf("%s",mp[i]);
int flag=;
for(int j=;j<m;j++)
{
if(mp[i][j]=='B'&&mp[i][j-]=='S'&&!flag)
{
mp[i][j]='S';
flag=;
}
}
}
for(int i=;i<m;i++)
{
if(mp[][i]=='S')
{
s=i;
break;
}
}
ans=inf;
bfs();
printf("%d\n",ans); }
return ;
}

The Separator in Grid_BFS的更多相关文章

  1. UITableViewCell里面separator的设置

    最近cell显示的时候左边一直有15个像素的偏移,查了下面的方法 //1. 不管用 [self.tableView setSeparatorInset:UIEdgeInsetsZero]; // 2. ...

  2. ios7 ios8 cell中下划线偏移(separator Insets)处理方法

    在ios7中,UITableViewCell左侧会有默认15像素的空白.这时候,设置setSeparatorInset:UIEdgeInsetsZero 能将空白去掉. 但是在ios8中,设置setS ...

  3. java.io.File中的pathSeparator与separator的差异

    先总的说一下区别: File.pathSeparator指的是分隔连续多个路径字符串的分隔符,例如: java -cp test.jar;abc.jar HelloWorld 就是指";&q ...

  4. oc TableView 分割线(separator)部分显示问题

    问题:当TableView的cell不能显示完整个屏幕(屏幕有剩余),则没有显示cell的地方也会显示分割线,这不是我们想要的,正常情况下,如果没有cell则应没有分割线.如下图所示:左图为遇到问题, ...

  5. UITableViewCell的separator分隔线设置失效

    // 处理separator -(void)viewDidLayoutSubviews { if ([self.tableView respondsToSelector:@selector(setSe ...

  6. 如何更改tableView cell的accessoryView位置,如何让首尾的Separator不显示

    一,如何更改tableView cell的accessoryView位置 1.实则是更改不了的,因此右边总会有一个小边距. 2.可以向 cell 的 contentView 中添加按钮放在右边,与 c ...

  7. [ASM C/C++] C makefile:2: *** missing separator. Stop. 问题

    在利用make编译代码时,makefile文件的目标代码前面要用tab而不能用空格来代替. 要不然就会提示: makefile:2: *** missing separator.  Stop. 要注意 ...

  8. 千份位Javascript Thousand Separator / string format

    function Separator(str){ return str.split(/(\d+)(\d{3})(\d{3})(\d{3})(\d{3})/).join(',').replace(/^, ...

  9. 关于Java的File.separator

    在Windows下的路径分隔符和Linux下的路径分隔符是不一样的,当直接使用绝对路径时,跨平台会暴出“No such file or diretory”的异常. 比如说要在temp目录下建立一个te ...

随机推荐

  1. Java 基础知识点(必知必会其二)

    1.如何将数字输出为每三位逗号分隔的格式,例如“1,234,467”? package com.Gxjun.problem; import java.text.DecimalFormat; impor ...

  2. java.util 类 TreeSet<E>

    java.lang.Object≥ java.util.AbstractCollection<E> ≥ java.util.AbstractSet<E> ≥ java.util ...

  3. 生产订单修改删除组件BDC

    可用函数修改:CO_XT_COMPONENT_CHANGE,一次一个 FORM prm_change_bom . DATA:gw_zstypf TYPE zstypf. DATA:lv_rspos T ...

  4. PHP 单引号和双引号的区别

    $a = 'jfdjaff';$b = '234125';$c = '"jj $a $b"'.PHP_EOL;echo $c;$c = 'jj $a $b'.PHP_EOL;ech ...

  5. Spring学习(一)——Spring中的依赖注入简介【转】

      [前面的话] Spring对我太重要了,做个关于web相关的项目都要使用Spring,每次去看Spring相关的知识,总是感觉一知半解,没有很好的系统去学习一下,现在抽点时间学习一下Spring. ...

  6. mysql 游标取值为空的问题

    DELIMITER $$ DROP PROCEDURE IF EXISTS updatePic $$ CREATE PROCEDURE updatePic() BEGIN DECLARE cover_ ...

  7. POJ 3660

    233333... Description: 就是说呢.牛是的实力室友大小之分的.然后呢.告诉你很多pair 表示任意两头牛之间的实力大小.按实力排序之后.问你一共有多少只牛的排名是确定了的. T_T ...

  8. php不解析的排查步骤

    php不解析的排查步骤:1. /usr/local/apache2/bin/apachectl -M 看一下有没有加载libphp5.so2. 查看配置文件中是否有 AddType applicati ...

  9. Windows安装配置php+memcached的方法

    Windows下Memcached的安装配置方法 1.将第一个包解压放某个盘下面,比如在c:\memcached. 2.在终端(也即cmd命令界面)下输入 'c:\memcached\memcache ...

  10. 二模 (6) day1

    第一题: 设 S(N)表示 N 的各位数字之和,如 S(484)=4+8+4=16,S(22)=2+2=4.如果一个正整数 x满足 S(x*x)=S(x)*S(x),我们称 x 为 Rabbit Nu ...