Given n points on the XY plane, count how many regular rectangles are formed. A rectangle is regular if and only if its sides are all parallel to the axis.
Input
The first line contains the number of tests t (1 ≤ t ≤ 10). Each case contains a single line with a
positive integer n (1 ≤ n ≤ 5000), the number of points. There are n lines follow, each line contains 2
integers x, y (≤ x, y ≤ 109
) indicating the coordinates of a point.
Output
For each test case, print the case number and a single integer, the number of regular rectangles found.
Sample Input
2
5
0 0
2 0
0 2
2 2
1 1
3
0 0
0 30
0 900
Sample Output
Case 1: 1
Case 2: 0

题意:给你n个点 ,问你这些点能够组成多少个 长宽和坐标轴平行的 矩形

题解:按照x排序,在y轴平行下,选择不同直线组合,满足两y轴上的点相等就是一种,  对于一堆相等的 我们用组合数就好了

//meek
///#include<bits/stdc++.h>
#include <iostream>
#include <cstdio>
#include <cmath>
#include <string>
#include <cstring>
#include <algorithm>
using namespace std ;
typedef long long ll;
#define mem(a) memset(a,0,sizeof(a))
#define pb push_back
#define fi first
#define se second
#define MP make_pair const int N=;
const ll INF = 1ll<<;
const int inf = <<;
const int mod= ;
const int M = ; struct ss{
int x,y;
}a[N],p[N*N];
int cnt;
int cmp(ss s1,ss s2) {
if(s1.x == s2.x) return s1.y<s2.y;
return s1.x<s2.x;
}
void init() {
cnt = ;mem(p);
}
ll solve() {
ll ans = ;
for(int i = ;i < cnt; ) {
int now = i+;
while(p[i].x == p[now].x && p[i].y == p[now].y) now++;
ll c = now - i;
if(c>=) ans += c*(c-)/;
i = now;
}
return ans;
}
int main() {
int T,n,x,y,cas = ;
scanf("%d",&T);
while(T--) {
init();
scanf("%d",&n);
for(int i=;i<=n;i++) {
scanf("%d%d",&x,&y);
a[i].x = x;
a[i].y = y;
}
sort(a+,a+n+,cmp);
cnt = ;
for(int i=;i<=n;i++) {
for(int j=i+;j<=n;j++) {
if(a[i].x != a[j].x) {
break;
}
p[cnt].x = a[i].y;
p[cnt].y = a[j].y;
cnt++;
}
}
printf("Case %d: ",cas++);
sort(p,p+cnt,cmp);
printf("%lld\n",solve());
}
return ;
}

代码

UVA 10574 - Counting Rectangles 计数的更多相关文章

  1. UVA 10574 - Counting Rectangles(枚举+计数)

    10574 - Counting Rectangles 题目链接 题意:给定一些点,求可以成几个边平行于坐标轴的矩形 思路:先把点按x排序,再按y排序.然后用O(n^2)的方法找出每条垂直x轴的边,保 ...

  2. UVA - 10574 Counting Rectangles

    Description Problem H Counting Rectangles Input: Standard Input Output:Standard Output Time Limit: 3 ...

  3. Counting Rectangles

    Counting Rectangles Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 1043 Accepted: 546 De ...

  4. counting sort 计数排序

    //counting sort 计数排序 //参考算法导论8.2节 #include<cstdio> #include<cstring> #include<algorit ...

  5. Project Euler 85 :Counting rectangles 数长方形

    Counting rectangles By counting carefully it can be seen that a rectangular grid measuring 3 by 2 co ...

  6. Codeforces Round #219 (Div. 2) D. Counting Rectangles is Fun 四维前缀和

    D. Counting Rectangles is Fun time limit per test 4 seconds memory limit per test 256 megabytes inpu ...

  7. Codeforces 372 B. Counting Rectangles is Fun

    $ >Codeforces \space 372 B.  Counting Rectangles is Fun<$ 题目大意 : 给出一个 \(n \times m\) 的 \(01\) ...

  8. uva 1436 - Counting heaps(算)

    题目链接:uva 1436 - Counting heaps 题目大意:给出一个树的形状,如今为这棵树标号,保证根节点的标号值比子节点的标号值大,问有多少种标号树. 解题思路:和村名排队的思路是一仅仅 ...

  9. UVA 12075 - Counting Triangles(容斥原理计数)

    题目链接:12075 - Counting Triangles 题意:求n * m矩形内,最多能组成几个三角形 这题和UVA 1393类似,把总情况扣去三点共线情况,那么问题转化为求三点共线的情况,对 ...

随机推荐

  1. hdu 2120 Ice_cream's world I

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=2120 Ice_cream's world I Description ice_cream's worl ...

  2. android开发系列之回调函数

    想必对于回调函数大家肯定不陌生,因为这是我们开发里面常用的代码技巧.我也就不废话了,让我们直接来看代码吧! public class TestCallback { public interface I ...

  3. ios中怎么获得当前版本号

    NSString *version = [NSBundle mainBundle].infoDictionary[(__bridge NSString *)kCFBundleVersionKey];

  4. UITabelView 高级(自定义Cell)

    自定义一个Cell 当我们要显示复杂数据的时候,例如要做一个扣扣聊天界面,或是新闻列表,系统的行已经不能满足我们的要求,这个时候我们可以通过自定义这个行,让他显示更多复杂结构的样式. 自定义cell就 ...

  5. 条款10:令operator=返回一个*this的引用

    为了编程的简洁性,有时候需要串联赋值,如:x = y = z = 15; 由于赋值采用右结合,因此上述语句被解释为:x = (y = (z = 15)); 为了实现串联赋值,复制操作符函数必须返回一个 ...

  6. 【学习总结】iOS中NSNotification、delegate、KVO三者之间的区别与联系?

    在开发ios应用的时候,我们会经常遇到一个常见的问题:在不过分耦合的前提下,controllers间怎么进行通信.在IOS应用不断的出现三种模式来实现这种通信: 1.委托delegation: 2.通 ...

  7. 子网划分与CIDR(斜杠加数字的表示与IP 的关系)(改进)

    子网和CIDR   将常规的子网掩码转换为二进制,将发现子网掩格式为连续的二进制1跟连续0,其中子网掩码中为1的部份表示网络ID,子网掩中为0的表示主机ID.比如255.255.0.0转换为二进制为1 ...

  8. gitlab&fengoffice的ldap配置

    1.fengoffice配置config/ldap_config.php $config_ldap = array ( 'binddn' => 'cn=admin,dc=xxx,dc=xxx', ...

  9. Careercup - Google面试题 - 6331648220069888

    2014-05-08 22:27 题目链接 原题: What's the tracking algorithm of nearest location to some friends that are ...

  10. 【Implement strStr() 】cpp

    题目: Implement strStr(). Returns the index of the first occurrence of needle in haystack, or -1 if ne ...