Given a binary search tree, write a function kthSmallest to find the kth smallest element in it.

Note: 
You may assume k is always valid, 1 ≤ k ≤ BST's total elements.

Follow up:
What if the BST is modified (insert/delete operations) often and you need to find the kth smallest frequently? How would you optimize the kthSmallest routine?

代码1:

/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public int kthSmallest(TreeNode root, int k) {
int count =countNodes(root.left);
if(k<=count){
return kthSmallest(root.left,k);
}else if(k>count+1){
return kthSmallest(root.right,k-1-count);
}
return root.val;
}
public int countNodes(TreeNode n){
if(n==null) return 0;
return 1+countNodes(n.left)+countNodes(n.right);
} }

  运行结果:

代码2:中序遍历递归

/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
private static int number=0;
private static int count=0;
public int kthSmallest(TreeNode root, int k) {
count=k;
helper(root);
return number;
}
public void helper(TreeNode n){
if(n.left!=null) helper(n.left);
count--;
if(count==0){
number=n.val;
return;
}
if(n.right!=null) helper(n.right);
} }

 运行结果:

 

代码3:中序遍历迭代

/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution { public int kthSmallest(TreeNode root, int k) {
Stack<TreeNode>st=new Stack<>();
while(root!=null){
st.push(root);
root=root.left;
}
while(k!=0){
TreeNode n=st.pop();
k--;
if(k==0) return n.val;
TreeNode right=n.right;
while(right!=null){
st.push(right);
right=right.left;
}
}
return -1;
} }

  运行结果:

代码4:使用队列,中序遍历,存储起来,然后出队n个元素即可。

/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution { private Queue<TreeNode> queue=new LinkedList<TreeNode>();
public int kthSmallest(TreeNode root, int k) {
inOrder(root);
TreeNode ret=null;
while(k>0){
ret=queue.poll();
k--;
}
return ret.val;
}
public void inOrder(TreeNode root){
if(root==null) return;
if(root.left!=null) inOrder(root.left);
queue.offer(root);
if(root.right!=null) inOrder(root.right); } }

  运行结果:

(medium)LeetCode 230.Kth Smallest Element in a BST的更多相关文章

  1. [leetcode] 230. Kth Smallest Element in a BST 找出二叉搜索树中的第k小的元素

    题目大意 https://leetcode.com/problems/kth-smallest-element-in-a-bst/description/ 230. Kth Smallest Elem ...

  2. [LeetCode] 230. Kth Smallest Element in a BST 二叉搜索树中的第K小的元素

    Given a binary search tree, write a function kthSmallest to find the kth smallest element in it. Not ...

  3. Leetcode 230. Kth Smallest Element in a BST

    Given a binary search tree, write a function kthSmallest to find the kth smallest element in it. Not ...

  4. [LeetCode] 230. Kth Smallest Element in a BST 解题思路

    Given a binary search tree, write a function kthSmallest to find the kth smallest element in it. Not ...

  5. Java for LeetCode 230 Kth Smallest Element in a BST

    解题思路: 直接修改中序遍历函数即可,JAVA实现如下: int res = 0; int k = 0; public int kthSmallest(TreeNode root, int k) { ...

  6. LeetCode 230 Kth Smallest Element in a BST 二叉搜索树中的第K个元素

    1.非递归解法 /** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * ...

  7. LeetCode 230. Kth Smallest Element in a BST 动态演示

    返回排序二叉树第K小的数 还是用先序遍历,记录index和K进行比较 class Solution { public: void helper(TreeNode* node, int& idx ...

  8. 【LeetCode】230. Kth Smallest Element in a BST (2 solutions)

    Kth Smallest Element in a BST Given a binary search tree, write a function kthSmallest to find the k ...

  9. 【刷题-LeetCode】230. Kth Smallest Element in a BST

    Kth Smallest Element in a BST Given a binary search tree, write a function kthSmallest to find the k ...

随机推荐

  1. RMAN备份与恢复之删除过期备份

    使用crosscheck backupset或crosscheck backup之后,提示所有备份集都为available状态,当他执行delete obsolete时,提示有两个文件需要删除.实际上 ...

  2. 转: Ext拖拽分析

    整个Ext架构中组件是其重要的组成部分,除了少部分(如树的结点)的界面表现元素不是在这样的一个体系中,大部分的页面表现元素都被绑定在这个体系之中,下面从这个体系的最底层即在这个继承体系的最高层进行研究 ...

  3. 转:Why SeaJS

    原文地址:http://chaoskeh.com/blog/why-seajs.html Why SeaJS 前言 本文主要面向刚接触 SeaJS 的同学.文章会先提出传统 Javascript 开发 ...

  4. C++ Socket编程步骤 【转】

    sockets(套接字)编程有三种,流式套接字(SOCK_STREAM),数据报套接字(SOCK_DGRAM),原始套接字(SOCK_RAW):基于TCP的socket编程是采用的流式套接字. 服务器 ...

  5. erlang和java通信

    连接在 https://guts.me/2014/07/27/erlang-communicates-with-java/ 代码在 https://github.com/mingshun/jinter ...

  6. 在Linux中使用VS Code编译调试C++项目

    最近项目需求,需要在Linux下开发C++相关项目,经过一番摸索,简单总结了一下如何通过VS Code进行编译调试的一些注意事项. 关于VS Code在Linux下的安装这里就不提了,不管是CentO ...

  7. mongdb3.0用户验证问题

    1.  用户验证方式更改: Mongodb2.6的默认用户验证方式是:MONGODB-CR Mongodb3.0的默认用户验证方式是:SCRAM-SHA-1 因为新的验证方式在spring和java中 ...

  8. Android一 流

    补充Java知识:流 java.io 四个抽象类: 字节流:InputStream OutputStream 字符流:Reader Writer 站在程序角度上,输入(读入到程序)输出(从程序写出) ...

  9. fork()详解

    参照: http://blog.csdn.net/jason314/article/details/5640969 http://coolshell.cn/articles/7965.html

  10. (C/C++) Interview in English - Threading

    Q. What's the process and threads and what's the difference between them? A.  A process is an execut ...