51nod1052 最大M子段和
dp优化我总是不太熟练。这一次首先我写了O(n4)->O(n3)->O(n2)。一步步的优化过来。yyl好像用的是单调队列优化dp我看不懂他的代码。。。
O(n4)
#include<cstdio>
#include<cstring>
#include<cctype>
#include<algorithm>
using namespace std;
#define rep(i,s,t) for(int i=s;i<=t;i++)
#define dwn(i,s,t) for(int i=s;i>=t;i--)
#define clr(x,c) memset(x,c,sizeof(x))
#define ll long long
ll read(){
ll x=0,f=1;char c=getchar();
while(!isdigit(c)) {
if(c=='-') f=-1;c=getchar();
}
while(isdigit(c)) x=x*10+c-'0',c=getchar();
return x*f;
}
const int nmax=5e3+5;
const ll inf=1e18;
ll dp[nmax],g[nmax],sm[nmax];
int main(){
int n=read(),m=read();ll u,v,d;
rep(i,1,n) sm[i]=sm[i-1]+read();
rep(i,1,m) {
rep(j,i,n) {
rep(k,0,j-1) {
u=inf;
rep(t,k+1,j) u=min(u,sm[t]);
dp[j]=max(dp[j],g[k]+sm[j]-u);
}
}
rep(j,1,n) g[j]=dp[j];
}
ll ans=0;
rep(i,m,n) ans=max(ans,dp[i]);
printf("%lld\n",ans);
return 0;
}
O(n3)
#include<cstdio>
#include<cstring>
#include<cctype>
#include<algorithm>
using namespace std;
#define rep(i,s,t) for(int i=s;i<=t;i++)
#define dwn(i,s,t) for(int i=s;i>=t;i--)
#define clr(x,c) memset(x,c,sizeof(x))
#define ll long long
ll read(){
ll x=0,f=1;char c=getchar();
while(!isdigit(c)) {
if(c=='-') f=-1;c=getchar();
}
while(isdigit(c)) x=x*10+c-'0',c=getchar();
return x*f;
}
const int nmax=5e3+5;
const ll inf=1e18;
ll dp[nmax],g[nmax],sm[nmax];
int main(){
int n=read(),m=read();ll u,v,d,tm=0,cnt=0;
rep(i,1,n) {
sm[i]=sm[i-1]+(u=read());
if(u) ++cnt,tm+=u;
}
if(m>=cnt) {
printf("%lld\n",tm);return 0;
}
rep(i,1,m) {
rep(j,i,n) {
dp[j]=dp[j-1];
rep(k,0,j-1) dp[j]=max(dp[j],g[k]+sm[j]-sm[k]);
}
rep(j,1,n) g[j]=dp[j];
}
printf("%lld\n",dp[n]);
return 0;
}
O(n2)
#include<cstdio>
#include<cstring>
#include<cctype>
#include<algorithm>
using namespace std;
#define rep(i,s,t) for(int i=s;i<=t;i++)
#define dwn(i,s,t) for(int i=s;i>=t;i--)
#define clr(x,c) memset(x,c,sizeof(x))
#define ll long long
ll read(){
ll x=0,f=1;char c=getchar();
while(!isdigit(c)) {
if(c=='-') f=-1;c=getchar();
}
while(isdigit(c)) x=x*10+c-'0',c=getchar();
return x*f;
}
const int nmax=5e3+5;
const ll inf=1e18;
ll dp[nmax],sm[nmax],f[nmax];
int main(){
int n=read(),m=read();ll u,v,d,tm=0,cnt=0;
rep(i,1,n) {
sm[i]=sm[i-1]+(u=read());
if(u) ++cnt,tm+=u;
}
if(m>=cnt) {
printf("%lld\n",tm);return 0;
}
f[0]=-inf;rep(j,1,n) f[j]=max(f[j-1],dp[j-1]-sm[j-1]);
rep(i,1,m) {
rep(j,i,n) dp[j]=max(dp[j-1],f[j]+sm[j]);
f[0]=-inf;rep(j,1,n) f[j]=max(f[j-1],dp[j-1]-sm[j-1]);
}
printf("%lld\n",dp[n]);
return 0;
}


第1行:2个数N和M,中间用空格分隔。N为整数的个数,M为划分为多少段。(2 <= N , M <= 5000)
第2 - N+1行:N个整数 (-10^9 <= a[i] <= 10^9)
输出这个最大和
7 2
-2
11
-4
13
-5
6
-2
26
51nod1052 最大M子段和的更多相关文章
- 【题解】最大 M 子段和 Max Sum Plus Plus [Hdu1024] [51nod1052]
[题解]最大 M 子段和 Max Sum Plus Plus [Hdu1024] [51nod1052] 传送门:最大 \(M\) 子段和 \(Max\) \(Sum\) \(Plus\) \(Plu ...
- 51nod 最大M子段和系列(1052、1053、1115)
51nod1052 数据量小,可使用O(N*M)的DPAC,递推公式: dp[i][j]=max(dp[i-1][j-1], dp[i][j-1])+a[j]; dp[i][j]表示前j个数取 i 段 ...
- 最大子段和(c++)
// 最大子段和.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include<iostream> using namesp ...
- 51Node 1065----最小正子段和
51Node 1065----最小正子段和 N个整数组成的序列a[1],a[2],a[3],…,a[n],从中选出一个子序列(a[i],a[i+1],…a[j]),使这个子序列的和>0,并且这 ...
- 最大M子段和 V2
51nod1053 这题还是我们熟悉的M子段和,只不过N,M<=50000. 这题似乎是一个堆+链表的题目啊 开始考虑把所有正数负数锁在一起. 比如: 1 2 3 -1 –2 -3 666 缩成 ...
- 51nod 循环数组最大子段和
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1050 对于普通的数组,只要求一次最大子段和即可.但是这题是可以循环的,所 ...
- [日常训练]最大M子段和
Description 在长度为的序列中选出段互不相交的子段,求最大字段和. Input 第一行两个整数. 第二行个整数. Output 一行一个整数表示最大值. Sample Input 5 2 1 ...
- 51nod1049(计算最大子段和)
题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1049 题意:又是仲文题诶- 思路:暴力会超时,又好像没什么专门 ...
- XCOJ 1103 (LCA+树链最大子段和)
题目链接: http://xcacm.hfut.edu.cn/problem.php?id=1103 题目大意:链更新.链查询,求树链的最大子段和.(子段可以为空) 解题思路: 将所有Query离线存 ...
随机推荐
- 定位position详解:relative与absolute
定位标签:position 包含属性:relative(相对) absolute(绝对) 1.position:relative; 如果对一个元素进行相对定位,首先它将出现在它所在的位置上.然后通过设 ...
- mysql 数据库优化
提到优化,先要确定出现的问题,是存储引擎选择问题,还是sql语句使用问题(如:索引)亦或者是单一存储服务器对于千万级别的数据力不从心. 解决方法:1.根据不同业务选用不同存储引擎,虽然一般情况下都优先 ...
- IOS 提交审核,遇到Missing Push Notification Entitlement 问题。
貌似不影响提交........还是有人提交成了. 昨天晚上提交软件审核,遇到了Missing Push Notification Entitlement 的问题. 问题起因:这个版本我添加了PUSH推 ...
- ZOJ3724 Delivery(树状数组??)
题意:给你一个有向图,第一类边是从第i个点到第i+1个点的,还有多出来的m条二类边,是从u到v的,同样是有向的.然后你要处理询问,从u到v经过最多一次二类边的最短距离是多少. 题目我觉得是神题,然后看 ...
- http协议本身能获取客户端Mac地址问题
http 位于网络应用程 应用层 会话层 表示层 传输层 网络层 数据链路层 物理层 数据在最高层开始传输 没经历下面一层加一层的头,然后传入目的电脑再进行一层层的解刨,所以http本来没有mac而接 ...
- SSH 使用JUnit测试
前提是引入两个包:org.springframework.test-3.1.3.RELEASE和JUnit4. package com.qk.test; import javax.annotation ...
- Project Euler 104:Pandigital Fibonacci ends 两端为全数字的斐波那契数
Pandigital Fibonacci ends The Fibonacci sequence is defined by the recurrence relation: F[n] = F[n-1 ...
- LevelDB系列之整体架构
LevelDb本质上是一套存储系统以及在这套存储系统上提供的一些操作接口.为了便于理解整个系统及其处理流程,我们可以从两个不同的角度来看待LevleDb:静态角度和动态角度.从静态角度,可以假想整个系 ...
- Photoshop支持ico输出
1.Photoshop支持ico格式插件下载:ICOFormat.8bi 2.把文件放到ps安装目录:xxx/Plug-ins/File Formats 下 3.重启下ps
- iOS:核心动画具体的类和协议的介绍
核心动画类:CAAnimation.CAPropertyAnimation.CABasicAnimation.CAKeyframeAnimation.CATransition.CAAnimationG ...