基本概念:

1.割点:若删掉某点后,原连通图分裂为多个子图,则称该点为割点

2.割点集合:在一个无向连通图中,如果有一个顶点集合,删除这个顶点集合,以及这个集合中所有顶点相关联的边以后,原图变成多个连通块,就称这个点集为割点集合

3.点连通度:最小割点集合中的顶点数。

4.割边(桥):删掉它之后,图必然会分裂为两个或两个以上的子图。

5.割边集合:如果有一个边集合,删除这个边集合以后,原图变成多个连通块,就称这个点集为割边集合

6.边连通度:一个图的边连通度的定义为,最小割边集合中的边数。

7.缩点:把没有割边的连通子图缩为一个点,此时满足任意两点之间都有两条路径可达。

注:求块<>求缩点。缩点后变成一棵k个点k-1条割边连接成的树。而割点可以存在于多个块中。

8.双连通分量:分为点双连通和边双连通。它的标准定义为:点连通度大于1的图称为点双连通图,边连通度大于1的图称为边双连通图。通俗地讲,满足任意两点之间,能通过两条或两条以上没有任何重复边的路到达的图称为双连通图。无向图G的极大双连通子图称为双连通分量

Tarjan算法的应用论述:

1.求强连通分量(见上一篇文章,本文第一行有链接)、割点、桥、缩点:

对于Tarjan算法中,我们得到了dfn和low两个数组,

low[u]:=min(low[u],dfn[v])——(u,v)为后向边,v不是u的子树;

low[u]:=min(low[u],low[v])——(u,v)为树枝边,v为u的子树;

下边对其进行讨论:

若low[v]>=dfn[u],则u为割点,节点v的子孙和节点u形成一个块。因为这说明v的子孙不能够通过其他边到达u的祖先,这样去掉u之后,图必然分裂为两个子图。这样我们处理点u时,首先递归u的子节点v,然后从v回溯至u后,如果发现上述不等式成立,则找到了一个割点u,并且u和v的子树构成一个块。

void tarjan(int x)
{
 v[x]=1,dfn[x]=low[x]=++num;
 for(int i=head[x];i;i=next[i])
  if(!v[ver[i]])
  {
   tarjan(ver[i]);
   low[x]=min(low[x],low[ver[i]]);
   if(dfn[x]<=low[ver[i]]) v[x]++;
  }
  else low[x]=min(low[x],dfn[ver[i]]);
 if((x==1&&v[x]>2)||(x>1&&v[x]>1)) v[x]=2; else v[x]=1;//v[x]=2表示该点为割点,注意其中第一个点要特判
}

若low[v]>dfn[u],则(u,v)为割边。 但是实际处理时我们并不这样判断,因为有的图上可能有重边,这样不好处理。我们记录每条边的标号(一条无向边拆成的两条有向边标号相同),记录每个点的父 亲到它的边的标号,如果边(u,v)是v的父亲边,就不能用dfn[u]更新low[v]。这样如果遍历完v的所有子节点后,发现low[v]=dfn[v],说明u的父亲边(u,v)为割边。

void tarjan(int x)
{
 vis[x]=1;
 dfn[x]=low[x]=++num;
 for(int i=head[x];i;i=next[i])
  if(!vis[ver[i]])
  {
   p[ver[i]]=edge[i];//记录父亲边
   tarjan(ver[i]);
   low[x]=min(low[x],low[ver[i]]);
  }
  else if(p[x]!=edge[i])//不是父亲边才更新
   low[x]=min(low[x],dfn[ver[i]]);
 if(p[x]&&low[x]==dfn[x]) f[p[x]]=1;//是割边
}

 2.求双连通分量以及构造双连通分量:

对于点双连通分支,实际上在求割点的 过程中就能顺便把每个点双连通分支求出。建立一个栈,存储当前双连通分支,在搜索图时,每找到一条树枝边或后向边(非横叉边),就把这条边加入栈中。如果 遇到某时满足DFS(u)<=Low(v),说明u是一个割点,同时把边从栈顶一个个取出,直到遇到了边(u,v),取出的这些边与其关联的点,组 成一个点双连通分支。割点可以属于多个点双连通分支,其余点和每条边只属于且属于一个点双连通分支。

对于边双连通分支,求法更为简单。只需在求出所有的桥以后,把桥边删除,原图变成了多个连通块,则每个连通块就是一个边双连通分支。桥不属于任何一个边双连通分支,其余的边和每个顶点都属于且只属于一个边双连通分支。

一个有桥的连通图,如何把它通过加边变成边双连通图?方法为首先求出所有的桥,然后删除这些桥边,剩下的每个连通块都是一个双连通子图。把每个双连通子图收缩为一个顶点,再把桥边加回来,最后的这个图一定是一棵树,边连通度为1。

统 计出树中度为1的节点的个数,即为叶节点的个数,记为leaf。则至少在树上添加(leaf+1)/2条边,就能使树达到边二连通,所以至少添加的边数就 是(leaf+1)/2。具体方法为,首先把两个最近公共祖先最远的两个叶节点之间连接一条边,这样可以把这两个点到祖先的路径上所有点收缩到一起,因为 一个形成的环一定是双连通的。然后再找两个最近公共祖先最远的两个叶节点,这样一对一对找完,恰好是(leaf+1)/2次,把所有点收缩到了一起。

3.求最近公共祖先(LCA)

在遍历到u时,先tarjan遍历完u的子树,则u和u的子树中的节点的最近公共祖先就是u,并且u和【u的兄弟节点及其子树】的最近公共祖先就是u的父亲。注意到由于我们是按照DFS顺序遍历的,我们可用一个color数组标记,正在访问的染色为1,未访问的标记为0,已经访问到即在【u的子树中的】及【u的已访问的兄弟节点及其子树中的】染色标记为2,这样我们可以通过并查集的不断合并更新,通过find实现以上目标。

注:用链表存储边和问题,可以使得该算法的时间复杂度降低为O(n+m+q),其中n、m、q分别为点、边、问题数目。本文中为了书写简便,采用的是矩阵的存储方式。

function find(x:longint):longint;
  begin
    if f[x]<>x then f[x]:=find(f[x]);
    find:=f[x];
  end;
procedure tarjan(u:longint);
  begin
     f[u]:=u; color[u]:=1;
     for i:=1 to n do
     if (g[u,i])and(color[i]=0) then//g[u,i]表示u连着i
        begin
          tarjan(i); f[i]:=u;
        end;
     for i:=1 to n do
     if ((ask[u,i])or(ask[i,u]))and(color[i]=2) then//ask[u,i]表示询问了u,i
       begin
         lca[u,i]:=find(i); lca[i,u]:=lca[u,i];
       end;
     color[u]:=2;
  end;

参考例题:Poj 1523、2942、3694、3352、3177  Tyvj P1111

(转)Tarjan应用:求割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)的更多相关文章

  1. Tarjan应用:求割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)【转】【修改】

    一.基本概念: 1.割点:若删掉某点后,原连通图分裂为多个子图,则称该点为割点. 2.割点集合:在一个无向连通图中,如果有一个顶点集合,删除这个顶点集合,以及这个集合中所有顶点相关联的边以后,原图变成 ...

  2. Tarjan算法应用 (割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)问题)(转载)

    Tarjan算法应用 (割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)问题)(转载) 转载自:http://hi.baidu.com/lydrainbowcat/blog/item/2 ...

  3. Tarjan算法求割点

    (声明:以下图片来源于网络) Tarjan算法求出割点个数 首先来了解什么是连通图 在图论中,连通图基于连通的概念.在一个无向图 G 中,若从顶点i到顶点j有路径相连(当然从j到i也一定有路径),则称 ...

  4. 连通分量模板:tarjan: 求割点 &amp;&amp; 桥 &amp;&amp; 缩点 &amp;&amp; 强连通分量 &amp;&amp; 双连通分量 &amp;&amp; LCA(近期公共祖先)

    PS:摘自一不知名的来自大神. 1.割点:若删掉某点后.原连通图分裂为多个子图.则称该点为割点. 2.割点集合:在一个无向连通图中,假设有一个顶点集合,删除这个顶点集合,以及这个集合中全部顶点相关联的 ...

  5. tarjan算法应用 割点 桥 双连通分量

    tarjan算法的应用. 还需多练习--.遇上题目还是容易傻住 对于tarjan算法中使用到的Dfn和Low数组. low[u]:=min(low[u],dfn[v])--(u,v)为后向边,v不是u ...

  6. tarjan算法求割点cojs 8

    tarjan求割点:cojs 8. 备用交换机 ★★   输入文件:gd.in   输出文件:gd.out   简单对比时间限制:1 s   内存限制:128 MB [问题描述] n个城市之间有通讯网 ...

  7. Tarjan在图论中的应用(二)——用Tarjan来求割点与割边

    前言:\(Tarjan\) 求割点和割边建立在 \(Tarjan\)算法的基础之上,因此建议在看这篇博客之前先去学一学\(Tarjan\). 回顾\(Tarjan\)中各个数组的定义 首先,我们来回顾 ...

  8. Tarjan 算法求割点、 割边、 强联通分量

    Tarjan算法是一个基于dfs的搜索算法, 可以在O(N+M)的复杂度内求出图的割点.割边和强联通分量等信息. https://www.cnblogs.com/shadowland/p/587225 ...

  9. hdu 2460(tarjan求边双连通分量+LCA)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2460 思路:题目的意思是要求在原图中加边后桥的数量,首先我们可以通过Tarjan求边双连通分量,对于边 ...

随机推荐

  1. SpringMvc中的反射

    controller中的方法,是通过反射调用的 spring监控controller中的注解,当命令符合某个注解的时候,通过反射,找到这个注解对应的方法,然后调用,处理完成得到返回值,再根据这个返回值 ...

  2. 用C#感受MongoDB MapReduce之魅力 转

    MapReduce这个名词随着hadoop的用户的增多,越来越被人关注.MapReduce可谓MongoDB之中的亮点,我也想深入了解MapReduce,加上MongoDB操作简单,所以就选择了它.M ...

  3. 从决策树学习谈到贝叶斯分类算法、EM、HMM --别人的,拷来看看

    从决策树学习谈到贝叶斯分类算法.EM.HMM     引言 最近在面试中,除了基础 &  算法 & 项目之外,经常被问到或被要求介绍和描述下自己所知道的几种分类或聚类算法(当然,这完全 ...

  4. javascript笔记4-函数表达式

    一般形式的创建函数,在执行代码之前会先读取函数声明,所以可以把函数声明写在函数调用的下面: sayHi(); function sayHi(){ alert("Hi!"); } 使 ...

  5. 数据结构《14》----并查集 Union-Find

    描述: 并查集是一种描述解决等价关系.能够方便地描述不相交的多个集合. 支持如下操作    1. 建立包含元素 x 的集合  MakeSet(x) 2. 查找给定元素所在的集合 Find(x), 返回 ...

  6. Python _ 开始介绍对象

    Python的私有变量,函数是在前面加上一个双下划线'__'来声明的,气访问和C++大同小异 例如 class Person: __name='小甲鱼' def print1(self): # 和 c ...

  7. 如何去除内联元素(inline-block元素)之间的间距(转载)

    如何去除内联元素(inline-block元素)之间的间距   前几天写一个专题页 div{width:900px;}div a{ display:inline-block; width:300px; ...

  8. NOIP2010 关押罪犯 (并查集)

    若x,y有关系 将x与y的补集, y与x的补集建立关系 ; maxm=; ..maxm,..] of longint; f:..maxn*] of longint; i,j,m,n,x,y,z:lon ...

  9. BZOJ2661 连连看 (费用流)

    把所有点拆成两个,将符合条件的两个点x,y连上边,流量为1,费用为-(x+y). 做一遍最小费用最大流,最后ans div 2即可. Program bzoj2661; ; ..] of longin ...

  10. Inno打包教程_百度经验

    Inno打包教程 Inno工具,是比较常用的打包软件.简简单单,一招叫你学会使用inno打包. 工具/原料 inno setup 软件 方法/步骤 双击桌面的:Inno setup compiler图 ...