LabelMe图像数据集下载
Download MATLAB Toolbox for the LabelMe Image Database
利用Matlab Toolbox工具箱下载图像库
一、下载Matlab Toolbox工具箱
1. Github repository
We maintain the latest version of the toolbox on github. To pull the latest version, make sure that "git" is installed on your machine and then run "git clone https://github.com/CSAILVision/LabelMeToolbox.git" on the command line. You can refresh your copy to the latest version by running "git pull" from inside the project directory.
2. Zip file
The zip file is a snapshot of the latest source code on github.
二、下载图像库
Download the Dataset
There are two ways to work with the dataset: (1) downloading all the images via the LabelMe Matlab toolbox. The toolbox will allow you to customize the portion of the database that you want to download, (2) Using the images online via the LabelMe Matlab toolbox. This option is less preferred as it will be slower, but it will allow you to explore the dataset before downloading it. Once you have installed the database, you can use the LabelMe Matlab toolbox to read the annotation files and query the images to extract specific objects.
Option 1: Customizable download using the LabelMe Matlab toolbox
Before downloading the dataset, we only ask you to label some images using the annotation tool online. Any new labels that you will add, will be inmediately ready for download.
Step 1: Download the LabelMe Matlab toolbox and add the toolbox to the Matlab path.
Step 2: The function LMinstall will download the database. There are three ways to use this function:
- To download the entire dataset, type the following into Matlab:
HOMEIMAGES = '/desired/path/to/Images';
HOMEANNOTATIONS = '/desired/path/to/Annotations';
LMinstall (HOMEIMAGES, HOMEANNOTATIONS); where "/desired/path/to/" is the desired location where the annotations and images will be stored.
This process will create the following directory structure under "/desired/path/to/":
./Annotations
./Annotations/folder1
...
./Annotations/folderN ./Images
./Images/folder1
...
./Images/folderN where folder1 through folderN are directories containing the images and annotations.
- If you only want to download a list of specific folders, then run:
HOMEIMAGES = '/desired/path/to/Images';
HOMEANNOTATIONS = '/desired/path/to/Annotations';
folderlist = {'05june05_static_street_porter'};
LMinstall (folderlist, HOMEIMAGES, HOMEANNOTATIONS);
This will download only one folder from the collection. You can see the complete list of folders here.
- If you already have the dataset but want to update the annotations, then use LMinstall with four arguments:
LMinstall (folders, images, HOMEIMAGES, HOMEANNOTATIONS);
Option 2: Access the online database directly with the LabelMe Matlab toolbox
Before downloading the dataset, we only ask you to label some images using the annotation tool online. Any new labels that you will add, will be inmediately ready for download. If you use the LabelMe Matlab toolbox, it is not necesary to download the database. You can use the online images and annotations in the same way as if they were on your local hard drive. This might be slow, but it will let you explore the database before downloading it. If you plan to use the database extensively, it is better to download a local copy for yourself. Here are a few Matlab commands that show how to use the online database:
HOMEIMAGES = 'http://people.csail.mit.edu/brussell/research/LabelMe/Images';
HOMEANNOTATIONS = 'http://people.csail.mit.edu/brussell/research/LabelMe/Annotations'; D = LMdatabase(HOMEANNOTATIONS); % This will build an index, which will take few minutes. % Now you can visualize the images
LMplot(D, , HOMEIMAGES); % Or read an image
[annotation, img] = LMread(D, , HOMEIMAGES);
You can query the database to select the images you want and install only those ones. For instance, if you are interested only in images containing cars, you can run the following:
% First create the list of images that you want:
[Q,j] = LMquery(D, 'object.name', 'car');
clear folderlist filelist
for i = :length(Q);
folderlist{i} = Q(i).annotation.folder;
filelist{i} = Q(i).annotation.filename;
end % Install the selected images:
HOMEIMAGES = '/desired/path/to/Images';
HOMEANNOTATIONS = '/desired/path/to/Annotations';
LMinstall (folderlist, filelist, HOMEIMAGES, HOMEANNOTATIONS);
参考:
[1] http://labelme.csail.mit.edu/Release3.0/browserTools/php/matlab_toolbox.php
[2] http://labelme.csail.mit.edu/Release3.0/browserTools/php/dataset.php
LabelMe图像数据集下载的更多相关文章
- SUN dataset图像数据集下载
SUN dataset数据集,有两个不错的网址: http://vision.princeton.edu/projects/2010/SUN/ (普林斯顿大学) http://groups.csail ...
- 人工智能大数据,公开的海量数据集下载,ImageNet数据集下载,数据挖掘机器学习数据集下载
人工智能大数据,公开的海量数据集下载,ImageNet数据集下载,数据挖掘机器学习数据集下载 ImageNet挑战赛中超越人类的计算机视觉系统微软亚洲研究院视觉计算组基于深度卷积神经网络(CNN)的计 ...
- 医学图像数据(二)——TCIA完整数据集下载方式
1. 构建下载环境 l TCIA数据集下载文件为.jnlp格式(JNLP(Java Network Launching Protocol )是java提供的一种可以通过浏览器直接执行java应用程序 ...
- scikit-learn数据集下载太慢的问题
有时候用scikit-learn在线下载数据时太慢,因为网络或者其他原因,这时候我们可以先把数据集下载到本地,然后再把这个数据集放到scikit-learn的data中,首先我们需要找到 scikit ...
- MS coco数据集下载
2017年12月02日 23:12:11 阅读数:10411 登录ms-co-co数据集官网,一直不能进入,FQ之后开看到下载链接.有了下载链接下载还是很快的,在我这儿晚上下载,速度能达到7M/s,所 ...
- Kaggle数据集下载
Kaggle数据集下载步骤: 安装Kaggle库: 注册Kaggle账户: 找到数据集,接受rules: 在My Account>>API中,点击Create New API Token, ...
- MIR Flickr 1M 图像数据集(点击即可下载)
Index of /mirflickr/mirflickr1m Name Last modified Size Description Parent Directory - exif.zip ...
- zhuan 常用图像数据集:标注、检索
目录(?)[+] 1.搜狗实验室数据集: http://www.sogou.com/labs/dl/p.html 互联网图片库来自sogou图片搜索所索引的部分数据.其中收集了包括人物.动物. ...
- 【机器学习】【计算机视觉】非常全面的图像数据集《Actions》
目录(?)[+] 1.搜狗实验室数据集: http://www.sogou.com/labs/dl/p.html 互联网图片库来自sogou图片搜索所索引的部分数据.其中收集了包括人物.动物.建筑 ...
随机推荐
- 关于Office 2013的几个问题
最近在阅读一些pdf的材料,想对其中做一些批注,但是PDF文档做批准比较麻烦,而且市场上的几个pdfToWord也不是很好用. 偶然的机会发现,使用office2013可以直接打开pdf文件,所以赶紧 ...
- EF 更新条目时出错。有关详细信息,请参见内部异常。
现象:使用EF新增记录时,一直报上述异常,网上说是值为空.主键外键未设等原因导致,但是改正这些情况下问题依然 解决过程:异常中有一句(请参见内部异常),一直都没有当回事,后来实在没办法就静下心来看了看 ...
- HDU1058Humble Numbers
Humble Numbers Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u ...
- AngularJs学习笔记--concepts(概念)
原版地址:http://code.angularjs.org/1.0.2/docs/guide/concepts 继续.. 一.总括 本文主要是angular组件(components)的概览,并说明 ...
- Sqli-labs less 51
Less-51 本关的sql语句为 $sql="SELECT * FROM users ORDER BY '$id'"; 我们此处要进行stacked injection,要 ...
- oom日志查看
这通常会触发 Linux 内核里的 Out of Memory (OOM) killer,OOM killer 会杀掉某个进程以腾出内存留给系统用,不致于让系统立刻崩溃.如果检查相关的日志文件(/va ...
- JavaScript 堆内存分析新工具 OneHeap
OneHeap 关注于运行中的 JavaScript 内存信息的展示,用可视化的方式还原了 HeapGraph,有助于理解 v8 内存管理. 背景 JavaScript 运行过程中的大部分数据都保存在 ...
- ACE 1.1.9 发布,开源云端代码编辑器
点这里 ACE 1.1.9 发布,开源云端代码编辑器 oschina 发布于: 2015年04月06日 (1评) 分享到: 收藏 +25 4月18日 武汉 源创会开始报名,送华为开发板 ACE ...
- Webpack教程二
Webpack教程一 开发技巧 启用source-map 现在的代码是合并以后的代码,不利于排错和定位,只需要在config中添加 ... devtool: 'eval-source-map', .. ...
- javascript console
javascript console console.log(object[, object, ...])在控制台输出一条消息.如果有多个参数,输出时会用空格隔开这些参数. 第一个参数可以是一个包含格 ...