设\(f[S][i]\)表示考虑到第\(i\)家店,已经买了集合\(S\)内的物品

一个朴素的想法是枚举子集转移

\[f[S][i]=\min\{f[T][i-1]+cost[S\oplus T][i]+d[i]\}
\]

这样做是\(O(n3^m)\)的,不太可行

可行一些的方法是这样的,考虑到枚举子集会重复很多状态

(类比[BZOJ] 2064: 分裂

实际上是可以用单个元素递进转移的

也就是

\[f[S][i]=\min\{f[S-\{j\}][i]+cost[j]\}
\]

然后再比较在第\(i\)家买是否合适

\[f[S][i]=\min\{f[S][i]+d[i],f[S][i-1]\}
\]

这样的复杂度是\(O(nm2^m)\)的(实际上也大的一匹..)

但是状压常数小,也就这样过了

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<bitset>
using namespace std; inline int rd(){
int ret=0,f=1;char c;
while(c=getchar(),!isdigit(c))f=c=='-'?-1:1;
while(isdigit(c))ret=ret*10+c-'0',c=getchar();
return ret*f;
}
#define space() putchar(' ')
#define nextline() putchar('\n')
void _(int x){if(!x)return;_(x/10);putchar('0'+x%10);}
void out(int x){if(!x)putchar('0');_(x);} const int MAXN = 17; inline void upmax(int &x,int y){x=max(x,y);}
inline void upmin(int &x,int y){x=min(x,y);} int n,m;
int d[105],f[1<<MAXN],g[1<<MAXN];
int c[105][MAXN]; int main(){
memset(g,0x3f,sizeof(g));
n=rd();m=rd();
for(int i=1;i<=n;i++){
d[i]=rd();
for(int j=0;j<m;j++)c[i][j]=rd();
}
g[0]=0;
for(int i=1;i<=n;i++){
memset(f,0x3f,sizeof(f));
f[0]=d[i];
for(int s=0;s<(1<<m);s++){
for(int j=0;j<m;j++)
if(s&(1<<j))
upmin(f[s],min(g[s^(1<<j)]+d[i],f[s^(1<<j)])+c[i][j]);
upmin(g[s],f[s]);
}
}
cout<<g[(1<<m)-1];
return 0;
}

[BZOJ] 4145: [AMPPZ2014]The Prices的更多相关文章

  1. BZOJ 4145: [AMPPZ2014]The Prices( 状压dp + 01背包 )

    我自己只能想出O( n*3^m )的做法....肯定会T O( nm*2^m )做法: dp( x, s ) 表示考虑了前 x 个商店, 已买的东西的集合为s. 考虑转移 : 先假设我们到第x个商店去 ...

  2. BZOJ.4145.[AMPPZ2014]The Prices(状压DP)

    BZOJ 比较裸的状压DP. 刚开始写麻烦惹... \(f[i][s]\)表示考虑了前\(i\)家商店,所买物品状态为\(s\)的最小花费. 可以写求一遍一定去\(i\)商店的\(f[i]\)(\(f ...

  3. BZOJ 4145 [AMPPZ2014] The Prices 解题报告

    感觉也是一个小清新题.. 我们考虑设立状态 $Dp[i][s]$ 表示考虑了前 $i$ 个商店后,购买状态为 $s$ 的最小花费. 转移的话就枚举每个商店 $i$,首先令: $$Dp[i][s] = ...

  4. bzoj 4145: [AMPPZ2014]The Prices【状压dp】

    设f[s][i]为已经买了集合s,当前在商店i,转移的话就是枚举新买的物品,两种情况,一种是在原商店买,不用付路费,另一种是从其他商店过来,这种再枚举从那个商店过来是不行的,记一个mn[s]为已经买了 ...

  5. 【BZOJ4145】[AMPPZ2014]The Prices 状压DP

    [BZOJ4145][AMPPZ2014]The Prices Description 你要购买m种物品各一件,一共有n家商店,你到第i家商店的路费为d[i],在第i家商店购买第j种物品的费用为c[i ...

  6. bzoj 4152[AMPPZ2014]The Captain

    bzoj 4152[AMPPZ2014]The Captain 给定平面上的n个点,定义(x1,y1)到(x2,y2)的费用为min(|x1-x2|,|y1-y2|),求从1号点走到n号点的最小费用. ...

  7. BZOJ 4144: [AMPPZ2014]Petrol

    4144: [AMPPZ2014]Petrol Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 457  Solved: 170[Submit][Sta ...

  8. 循环队列+堆优化dijkstra最短路 BZOJ 4152: [AMPPZ2014]The Captain

    循环队列基础知识 1.循环队列需要几个参数来确定 循环队列需要2个参数,front和rear 2.循环队列各个参数的含义 (1)队列初始化时,front和rear值都为零: (2)当队列不为空时,fr ...

  9. BZOJ 4152: [AMPPZ2014]The Captain( 最短路 )

    先按x排序, 然后只有相邻节点的边才有用, 我们连起来, 再按y排序做相同操作...然后就dijkstra ---------------------------------------------- ...

随机推荐

  1. Docker学习:virtualbox安装和配置

    下载.安装 从官网:https://www.virtualbox.org/下载,根据说明直接一步步安装即可 安装ubuntu 说明:这里本机内存是16G,若内存<4G安装完成虚拟机, 安装完成之 ...

  2. 如何使用WPS从正文开始页码为1,而不是从目录开始?

    在插入目录前,在最前页插入一个空白页,在这个空白页里面生成目录,双击正文的页脚,点一下出现的与上一节相同的按钮,关闭页眉页脚的同前节,发现与上一节相同这几个字消失后,把目录中的页码删除,不会在影响正文 ...

  3. String常用方法简介

    1. 创建String对象的常用方法 (1) String s1 = "mpptest" (2)  String s2 = new String(); (3) String s3 ...

  4. Django -- 权限初识

    待 需求分析-场景 假设需要为公司设计一个人员管理系统,并为各级领导及全体员工分配系统登录账号.有如下几个要求: 1.权限等级不同 公司领导登录后可查看所有员工的信息,部门领导登陆后之可查看本部门员工 ...

  5. FusionCharts的类 - 实例功能

    一.FusionCharts的类 - 实例功能 1.configure(name:string , value:string)  or  configure(configurations: Objec ...

  6. 浮点数据与IEE754

    在计算机系统(包括单片机)中,浮点数(单精度float和双精度的double)对采用IEE-754标准.该标准为 32 位浮点和 64 位双精度浮点二进制小数定义了二进制标准. IEEE 754 用科 ...

  7. RabbitMQ使用教程(二)RabbitMQ用户管理,角色管理及权限设置

    上一篇博客 RabbitMQ使用教程(一)RabbitMQ环境安装配置及Hello World示例 中,我们成功的安装好了RabbitMQ环境,并通过一个Java客户端示例了解了用生产者来发布消息,用 ...

  8. watir 的api在线文档

    http://rubydoc.info/gems/watir-webdriver/frames http://rdoc.info/gems/watir-webdriver/frames http:// ...

  9. java http的get,post请求

    初学可用F12查看任意网页帮助理解 package httpTest: import java.io.BufferedReader; import java.io.IOException;import ...

  10. CSS中的定位机制

    CSS3 中有三种定位机制 : 普通文档流 (text)| 浮动(float) | 定位(position) 普通文档流 就是CSS中默认的文本文档 普通流中,元素位置由文档顺序和元素性质决定,块级元 ...