题目链接

题意

有\(n\)个牛棚,每个牛棚初始有\(a_i\)头牛,最后能容纳\(b_i\)头牛。有\(m\)条道路,边权为走这段路所需花费的时间。问最少需要多少时间能让所有的牛都有牛棚可待?

思路

二分

因为问题具有单调性,因此考虑二分时间,\(check\)是否满足条件。

满足条件指什么呢?

是指所有的牛都有牛棚可待。

是指所有的牛都顺利地从某一个牛棚移动到了另一个合法的牛棚(或者不移动),而这个移动是在限定的时间范围内的。

建图

首先拆点,将牛棚拆成 初始牛棚 与 终态牛棚。

  1. 在 源点 到 初始牛棚 之间连边,权值为初始时该牛棚内牛的个数。

  2. 在 终态牛棚 到 汇点 之间连边,权值为该牛棚最终可容纳的牛的个数。

  3. 在 初始牛棚 到 终态牛棚 之间连边:

    \((u_i,v_j),(v_i,u_j)\):当且仅当移动的时间\(d(i,j)\)小于当前\(check\)的值时,才可以连这条边;

    \((u_i,u_i)\):因为无需花费时间,所以永远可以连上。

    这两类边的权值都是\(inf\),因为只要在限定的时间范围内,任意多的牛都可以从上面通过。

如果最大流对于源点而言是满流,则\(check\)成功

总括

综上所述,本题即最短路+二分+最大流

Code

#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <queue>
#define inf1 0x3f3f3f3f3f3f3f3f
#define inf2 0x3f3f3f3f
#define maxn 1010
#define maxm 200010
using namespace std;
typedef long long LL;
LL a[maxn][maxn], mx, d;
struct Edge { int to, ne, c; }edge[maxm];
int dep[maxn], ne[maxn], tmp[maxn], n,m, tot, s,t,num, x[maxn], y[maxn];
void add(int u, int v, int c) {
edge[tot] = {v, ne[u], c};
ne[u] = tot++;
edge[tot] = {u, ne[v], 0};
ne[v] = tot++;
}
int bfs(int src) {
memset(dep, 0, sizeof dep);
dep[src] = 1;
queue<int> q;
while (!q.empty()) q.pop();
q.push(src);
while (!q.empty()) {
int u = q.front(); q.pop();
for (int i = ne[u]; ~i; i = edge[i].ne) {
int v = edge[i].to;
if (edge[i].c > 0 && !dep[v]) dep[v] = dep[u] + 1, q.push(v);
}
}
return dep[t];
}
int dfs(int u, int flow) {
if (u == t) return flow;
int ret = 0;
for (int i = ne[u]; ~i; i = edge[i].ne) {
int v = edge[i].to;
if (edge[i].c > 0 && dep[v] == dep[u] + 1) {
int c = dfs(v, min(flow-ret, edge[i].c));
edge[i].c -= c;
edge[i^1].c += c;
ret += c;
if (ret == flow) break;
}
}
if (!flow) dep[u] = 0;
return ret;
}
void floyd() {
for (int i = 1; i <= n; ++i) for (int j = 1; j <= n; ++j) a[i][j] = inf1;
for (int i = 1; i <= n; ++i) a[i][i] = 0;
while (m--) {
int u, v;
scanf("%d%d%lld", &u, &v, &d);
a[u][v] = a[v][u] = min(a[u][v], d);
}
for (int k = 1; k <= n; ++k) {
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= n; ++j) {
if (k==i||k==j) continue;
a[i][j] = a[j][i] = a[i][k]+a[k][j] < a[i][j] ? a[i][k]+a[k][j] : a[i][j];
}
}
}
mx = 0;
for (int i = 1; i <= n; ++i) for (int j = i+1; j <= n; ++j) if (a[i][j] != inf1) mx = max(mx, a[i][j]);
}
bool check(LL lim) {
tot = 0; memset(ne, -1, sizeof ne);
for (int i = 1; i <= n; ++i) {
add(s, i, x[i]); add(n+i, t, y[i]);
add(i, n+i, inf2);
}
int cnt = tot;
for (int i = s; i <= t; ++i) tmp[i] = ne[i];
for (int i = 1; i <= n; ++i) {
for (int j = i+1; j <= n; ++j) {
if (a[i][j] <= lim) add(i, n+j, inf2), add(j, n+i, inf2);
}
}
int ans=0, ret=0;
while (bfs(s)) {
while (ret = dfs(s, inf2)) ans += ret;
}
return ans == num;
}
int main() {
scanf("%d%d", &n, &m);
s = 0, t = n<<1|1, num = 0;
for (int i = 1; i <= n; ++i) {
scanf("%d%d", &x[i], &y[i]);
num += x[i];
}
floyd();
LL l = 0, r = mx;
while (r > l) {
LL mid = l+r>>1;
if (check(mid)) r = mid;
else l = mid+1;
}
if (check(l)) printf("%lld\n", l);
else puts("-1");
return 0;
}

poj 2391 Ombrophobic Bovines 最短路 二分 最大流 拆点的更多相关文章

  1. POJ 2391 Ombrophobic Bovines(Floyd+二分+最大流)

    题目链接 题意:农场有F(1 <= F <= 200)片草地用于放牛,这些草地有P(1 <= P <= 1500)连接,农场的草地上有一些避雨点,奶牛们可以在避雨点避雨,但是避 ...

  2. poj 2391 Ombrophobic Bovines, 最大流, 拆点, 二分, dinic, isap

    poj 2391 Ombrophobic Bovines, 最大流, 拆点, 二分 dinic /* * Author: yew1eb * Created Time: 2014年10月31日 星期五 ...

  3. poj 2391 Ombrophobic Bovines(最大流+floyd+二分)

    Ombrophobic Bovines Time Limit: 1000MSMemory Limit: 65536K Total Submissions: 14519Accepted: 3170 De ...

  4. POJ 2391 Ombrophobic Bovines (Floyd + Dinic +二分)

    Ombrophobic Bovines Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11651   Accepted: 2 ...

  5. POJ 2391 Ombrophobic Bovines

    Ombrophobic Bovines Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 18623   Accepted: 4 ...

  6. POJ 2391 Ombrophobic Bovines(二分+拆点+最大流)

    http://poj.org/problem?id=2391 题意: 给定一个无向图,点i处有Ai头牛,点i处的牛棚能容纳Bi头牛,求一个最短时间T,使得在T时间内所有的牛都能进到某一牛棚里去. 思路 ...

  7. POJ 2391 Ombrophobic Bovines ( 经典最大流 && Floyd && 二分 && 拆点建图)

    题意 : 给出一些牛棚,每个牛棚都原本都有一些牛但是每个牛棚可以容纳的牛都是有限的,现在给出一些路与路的花费和牛棚拥有的牛和可以容纳牛的数量,要求最短能在多少时间内使得每头牛都有安身的牛棚.( 这里注 ...

  8. POJ 2391 Ombrophobic Bovines ★(Floyd+二分+拆点+最大流)

    [题意]有n块草地,一些奶牛在草地上吃草,草地间有m条路,一些草地上有避雨点,每个避雨点能容纳的奶牛是有限的,给出通过每条路的时间,问最少需要多少时间能让所有奶牛进入一个避雨点. 和POJ2112很类 ...

  9. POJ 2391 Ombrophobic Bovines (二分答案+floyd+最大流)

    <题目链接> 题目大意: 给定一个有$n$个顶点和$m$条边的无向图,点$i$ 处有$A_i$头牛,点$i$ 处的牛棚能容纳$B_i$头牛,每条边有一个时间花费$t_i$(表示从一个端点走 ...

随机推荐

  1. 3 个用于数据科学的顶级 Python 库

    使用这些库把 Python 变成一个科学数据分析和建模工具. Python 的许多特性,比如开发效率.代码可读性.速度等使之成为了数据科学爱好者的首选编程语言.对于想要升级应用程序功能的数据科学家和机 ...

  2. jupyter notebook(三)——IOPub_data_rate_limit报错

    一.问题 运行jupyter notebook,然后运行python代码,读取文件处理时,会报错.发现时IO读取时错误.应该是IO速率问题. 下面是问题报错: IOPub data rate exce ...

  3. PHP计算两个字符的相似程度similar_text

    在网站开发中,我们会常常要计算两个字符的相似程度,那么PHP为我们提供了一个函数similar_text;  1,similar_text的用法 如果我想计算"ly89cn"和&q ...

  4. js中正则表达式与Python中正则表达式的区别

    今天女票让我帮她写一个js中的正则,来提取电话号码,对于正则规则来说,js与python是基本没有区别的,重点的区别是在一些函数与方法中. python中的正则提取: import re str = ...

  5. HDU - 1973 - Prime Path (BFS)

    Prime Path Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

  6. 3 View - 状态保持 session

    1.状态保持 http协议是无状态的:每次请求都是一次新的请求,不会记得之前通信的状态 客户端与服务器端的一次通信,就是一次会话 实现状态保持的方式:在客户端或服务器端存储与会话有关的数据 存储方式包 ...

  7. Linux程序编辑器

    重点回顾:Linux底下的配置文件多为文本文件,故使用vim即可进行设定编辑: vim可视为程序编辑器,可用以编辑shell script,配置文件等,避免打错字 vi为所有unix like的操作系 ...

  8. 接口测试之post和get的区别

    post和get都可以给服务器发送请求,在做接口测试的时候,我发现有些时候某些功能的接口文档中是用post请求发送的, 但是只要接口一致参数一致用post也能发送请求,并且获取到的返回也是正确的. 那 ...

  9. alert(1) to win部分解题

    XSS在线习题分析 (https://alf.nu/alert1) 1. Warmup function escape(s) { return '<script>console.log(& ...

  10. 【Part1】用JS写一个Blog(node + vue + mongoDB)

    学习JS也有一段时间了,准备试着写一个博客项目,前后端分离开发,后端用node只提供数据接口,前端用vue-cli脚手架搭建,路由也由前端控制,数据异步交互用vue的一个插件vue-resourse来 ...