Problem D: (ds:树)合并果子

Time Limit: 5 Sec  Memory Limit: 64 MB
Submit: 80  Solved: 4
[Submit][Status][Web
Board
]

Description

在一个果园,多多已经将所有的果子都打了下来,而且按照果子的不同种类分成了不同的堆,多多决定将所有的果子合成一堆。

每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。可以看出,经过n-1次合并之后,就剩下一堆了。多多在合并果子时总共消耗的体力等于每次合并所耗体力之和。

因为多多还要花大力气把这些果子搬回家,所以多多在合并果子时要要尽可能地节省体力。假定每个果子的重量都为1,并且已知果子的种类数和每种果子的数目,你的任务是设计出合并的次序方案,使多多耗费的体力最小,并输出这个最小的体力耗费值。

假如有3种果子,数目依次为1、2、9,可以先将1、2堆合并,新堆数目为3,耗费体力为3。接着,将新堆与原先的第三堆合并,又得到新的堆,数目为12,耗费体力为12。所以多多总共耗体力=3+12=15。可以证明15为最小的体力耗费值。

Input

输入第一行为整数M,表示有M个case(测试实例)。

接下来每个case包含2行,第一行为整数n(1<=n<=10,000),表示果子的种类数,第二行包含n个整数,用空格分开,分别表示有每种果子的数目。

Output

每个case输出最小的体力耗费值

Sample Input

2
3
1 2 9
4
1 2 9 4

Sample Output

15
26

由于不懂数据结构,只能用优先队列来做了。做法:每次合并当前最小的两堆,将合并之后的堆插入原来的序列中并保持有序。本想一路sort,后来想想类似的容器也可以做到啊,于是尝试了一下只是在紫书上看到过的优先队列。就是自定义比较规则需要稍微改动一下。

代码:

#include<iostream>
#include<algorithm>
#include<cstdlib>
#include<sstream>
#include<cstring>
#include<cstdio>
#include<string>
#include<deque>
#include<cmath>
#include<queue>
#include<set>
#include<map>
using namespace std;
int main (void)
{
int t,i,j,ans,n,num,temp;
cin>>t;
while (t--)
{
priority_queue<int,vector<int>,greater<int> >pos;
cin>>n;
for (i=0; i<n; i++)
{
cin>>num;
pos.push(num);
}
ans=0;
temp=0;
int cnt=0;
if(n==1)//一个的情况下特判掉,不然会输出0
{
cout<<pos.top()<<endl;
}
else
{
while (!pos.empty())//模拟
{
temp=temp+pos.top();
cnt++;
pos.pop();
if(cnt%2==0)
{
ans=ans+temp;
pos.push(temp);
cnt=0;
temp=0;
}
}
cout<<ans<<endl;
}
}
return 0;
}

ACM程序设计选修课——Problem D: (ds:树)合并果子(最优二叉树赫夫曼算法)的更多相关文章

  1. ACM程序设计选修课——Problem F:(ds:图)旅游规划(优先队列+SPFA)

    问题 F: (ds:图)旅游规划 时间限制: 1 Sec  内存限制: 128 MB 提交: 14  解决: 4 题目描述 有了一张自驾旅游路线图,你会知道城市间的高速公路长度.以及该公路要收取的过路 ...

  2. ACM程序设计选修课——Problem E:(ds:图)公路村村通(优先队列或sort+克鲁斯卡尔+并查集优化)

    畅通工程 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submi ...

  3. ACM程序设计选修课——Problem E:(ds:图)公路村村通(Prim)

    问题 E: (ds:图)公路村村通 时间限制: 1 Sec  内存限制: 128 MB 提交: 9  解决: 5 题目描述 现有村落间道路的统计数据表中,列出了有可能建设成标准公路的若干条道路的成本, ...

  4. 【算法】赫夫曼树(Huffman)的构建和应用(编码、译码)

    参考资料 <算法(java)>                           — — Robert Sedgewick, Kevin Wayne <数据结构>       ...

  5. 赫夫曼树JAVA实现及分析

    一,介绍 1)构造赫夫曼树的算法是一个贪心算法,贪心的地方在于:总是选取当前频率(权值)最低的两个结点来进行合并,构造新结点. 2)使用最小堆来选取频率最小的节点,有助于提高算法效率,因为要选频率最低 ...

  6. javascript实现数据结构: 树和二叉树的应用--最优二叉树(赫夫曼树),回溯法与树的遍历--求集合幂集及八皇后问题

    赫夫曼树及其应用 赫夫曼(Huffman)树又称最优树,是一类带权路径长度最短的树,有着广泛的应用. 最优二叉树(Huffman树) 1 基本概念 ① 结点路径:从树中一个结点到另一个结点的之间的分支 ...

  7. 树&二叉树&哈夫曼树

    1.树 需要注意的两点:n(n>=0)表示结点的个数,m表示子树的个数 (1)n>0时,树的根节点是唯一的. (2)m>0时,子树的个数没有限制. 结点的度和树的度 (1)结点的度是 ...

  8. puk1521 赫夫曼树编码

    Description An entropy encoder is a data encoding method that achieves lossless data compression by ...

  9. 经典树与图论(最小生成树、哈夫曼树、最短路径问题---Dijkstra算法)

    参考网址: https://www.jianshu.com/p/cb5af6b5096d 算法导论--最小生成树 最小生成树:在连通网的所有生成树中,所有边的代价和最小的生成树,称为最小生成树. im ...

随机推荐

  1. Processing分形之一——Wallpaper

    之前用C语言实现过一些分形,但是代码比较复杂.而对于天生对绘图友好的Processing,及其方便. 在大自然中分形普遍存在,我们用图形模拟,主要是找到一个贴近的函数. 代码 /** * Wallpa ...

  2. java基础—方法重载(overload)

    一.方法的重载 方法名一样,但参数不一样,这就是重载(overload). 所谓的参数不一样,主要有两点:第一是参数的个数不一样,第二是参数的类型不一样.只要这两方面有其中的一方面不一样就可以构成方法 ...

  3. session添加登录次数限制

    session 中设置了生存期,20分钟,输入密码错误次数保存到session 中,过一段时间自动解除: //登陆的用户名或者密码出错次数 int n = 0; if(logintimes == nu ...

  4. SQL Server 游标的应用

    ----------------SQL游标应用----------------- 今天由于业务需求,需要在存储过程中实现有一个表的主键去匹配在另一个表中作为外键所对应的数值 ,若在C#中则非常简单只需 ...

  5. 关于SQL语言的初步认识

    关于SQL语言的初步认识 1.一个SQL数据库是表(Table)的集合,它由一个或多个SQL模式定义. 2.一个SQL表由行集构成,一行是列的序列(集合),每列与行对应一个数据项. 3.一个表或者是一 ...

  6. oracle系統表、數據字典介紹與日常問題診斷

    oracle系統表.數據字典介紹與日常問題診斷 數據字典是由唯讀的table和view組成的,產生於$oracle_home\rdbms\admin\catalog.sql.裡面儲存Oracle資料庫 ...

  7. iOS 后台传输服务

    后台传输服务 — 我们用水壶来比喻 (0:14) 后天传输服务是 iOS 7 引进的 API,它准许应用暂停或者中止之后,在后台继续执行网络服务(比如下载或者上传).举个例子,这正是 Dropbox ...

  8. java工作环境配置jdk,idea

    下载 jdk 1.8 https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html 配置环境 ...

  9. C#基础-循环语句

    while语句 int i = 1,sum=0; while (i <= 100) { sum += i; i++; } Console.WriteLine(sum); do···while语句 ...

  10. Fedora 28 系统基础配置以及常用软件安装方式

    实验说明: 很多人说Linux很难用,很难上手,其实不然,倘若不玩游戏,其实很多发行版Linux都可以成为主力系统,就比如本章要讲的 Fedora 28.本章会从镜像来源.系统安装.基础配置和常用软件 ...