题目链接:http://poj.org/problem?id=2104

K-th Number
Time Limit: 20000MS   Memory Limit: 65536K
Total Submissions: 64277   Accepted: 22615
Case Time Limit: 2000MS

Description

You are working for Macrohard company in data structures department. After failing your previous task about key insertion you were asked to write a new data structure that would be able to return quickly k-th order statistics in the array segment. 
That is, given an array a[1...n] of different integer numbers, your program must answer a series of questions Q(i, j, k) in the form: "What would be the k-th number in a[i...j] segment, if this segment was sorted?" 
For example, consider the array a = (1, 5, 2, 6, 3, 7, 4). Let the question be Q(2, 5, 3). The segment a[2...5] is (5, 2, 6, 3). If we sort this segment, we get (2, 3, 5, 6), the third number is 5, and therefore the answer to the question is 5.

Input

The first line of the input file contains n --- the size of the array, and m --- the number of questions to answer (1 <= n <= 100 000, 1 <= m <= 5 000). 
The second line contains n different integer numbers not exceeding 109 by their absolute values --- the array for which the answers should be given. 
The following m lines contain question descriptions, each description consists of three numbers: i, j, and k (1 <= i <= j <= n, 1 <= k <= j - i + 1) and represents the question Q(i, j, k).

Output

For each question output the answer to it --- the k-th number in sorted a[i...j] segment.

Sample Input

7 3
1 5 2 6 3 7 4
2 5 3
4 4 1
1 7 3

Sample Output

5
6
3

Hint

This problem has huge input,so please use c-style input(scanf,printf),or you may got time limit exceed.

Source

Northeastern Europe 2004, Northern Subregion

划分树:

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int mod = 1e9+;
const int MAXN = 1e5+; int tree[][MAXN];
int sorted[MAXN];
int toleft[][MAXN]; void build(int l, int r, int dep)
{
if(l==r) return;
int mid = (l+r)>>;
int same = mid-l+;
for(int i = l; i<=r; i++)
if(tree[dep][i]<sorted[mid])
same--; int lpos = l, rpos = mid+;
for(int i = l; i<=r; i++)
{
if(tree[dep][i]<sorted[mid])
tree[dep+][lpos++] = tree[dep][i];
else if(tree[dep][i]==sorted[mid] && same>)
{
tree[dep+][lpos++] = tree[dep][i];
same--;
}
else
tree[dep+][rpos++] = tree[dep][i];
toleft[dep][i] = toleft[dep][l-] + lpos - l;
} build(l, mid, dep+);
build(mid+, r, dep+);
} int query(int L, int R, int l, int r, int dep, int k)
{
if(l==r) return tree[dep][l];
int mid = (L+R)>>;
int cnt = toleft[dep][r] - toleft[dep][l-]; if(cnt>=k)
{
int newl = L + toleft[dep][l-] - toleft[dep][L-];
int newr = newl + cnt - ;
return query(L, mid, newl, newr, dep+, k);
}
else
{
int newr = r + toleft[dep][R] - toleft[dep][r];
int newl = newr - (r-l-cnt);
return query(mid+, R, newl, newr, dep+, k-cnt);
}
} int main()
{
int n, m;
while(scanf("%d%d",&n,&m)!=EOF)
{
memset(tree, , sizeof(tree));
for(int i = ; i<=n; i++)
{
scanf("%d",&tree[][i]);
sorted[i] = tree[][i];
}
sort(sorted+, sorted++n);
build(, n, );
int s, t, k;
while(m--)
{
scanf("%d%d%d",&s,&t,&k);
printf("%d\n", query(,n,s,t,,k));
}
}
return ;
}

主席树(循环):

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int MOD = 1e9+;
const int MAXN = 1e5+;
const int M = MAXN*; int n, q, m, tot;
int a[MAXN], t[MAXN];
int T[MAXN], lson[M], rson[M], c[M]; void Init_hash()
{
for(int i = ; i<=n; i++)
t[i] = a[i];
sort(t+,t++n);
m = unique(t+,t++n)-(t+);
} int hash(int x)
{
return lower_bound(t+,t++m, x)-t;
} int build(int l, int r)
{
int root = tot++;
c[root] = ;
if(l!=r)
{
int mid = (l+r)>>;
lson[root] = build(l,mid);
rson[root] = build(mid+,r);
}
return root;
} int update(int root, int pos, int val)
{
int newroot = tot++, tmp = newroot;
c[newroot] = c[root] + val;
int l = , r = m;
while(l<r)
{
int mid = (l+r)>>;
if(pos<=mid)
{
lson[newroot] = tot++; rson[newroot] = rson[root];
newroot = lson[newroot]; root = lson[root];
r = mid;
}
else
{
rson[newroot] = tot++; lson[newroot] = lson[root];
newroot = rson[newroot]; root = rson[root];
l = mid + ;
}
c[newroot] = c[root] + val;
}
return tmp;
} int query(int left_root, int right_root, int k)
{
int l = , r = m;
while(l<r)
{
int mid = (l+r)>>;
if(c[lson[left_root]]-c[lson[right_root]]>=k)
{
r = mid;
left_root = lson[left_root];
right_root = lson[right_root];
}
else
{
l = mid + ;
k -= c[lson[left_root]]-c[lson[right_root]];
left_root = rson[left_root];
right_root = rson[right_root];
}
}
return l;
} int main()
{
while(scanf("%d%d",&n,&q)==)
{
tot = ;
for(int i = ; i<=n; i++)
scanf("%d",&a[i]);
Init_hash();
T[n+] = build(,m);
for(int i = n; i; i--)
{
int pos = hash(a[i]);
T[i] = update(T[i+],pos,);
}
while(q--)
{
int l, r, k;
scanf("%d%d%d",&l,&r,&k);
printf("%d\n", t[query(T[l],T[r+],k)]);
}
}
}

主席树(递归):

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int MOD = 1e9+;
const int MAXN = 1e5+;
const int M = MAXN*; int n, q, m, tot;
int a[MAXN], t[MAXN];
int T[MAXN], lson[M], rson[M], c[M]; void Init_hash()
{
for(int i = ; i<=n; i++)
t[i] = a[i];
sort(t+,t++n);
m = unique(t+,t++n)-(t+);
} int hash(int x)
{
return lower_bound(t+,t++m, x)-t;
} int build(int l, int r)
{
int root = tot++;
c[root] = ;
if(l!=r)
{
int mid = (l+r)>>;
lson[root] = build(l,mid);
rson[root] = build(mid+,r);
}
return root;
} int update(int root, int l, int r, int pos, int val)
{
int newroot = tot++;
if(l==r)
{
c[newroot] = c[root] + val;
return newroot;
}
int mid = (l+r)>>;
if(pos<=mid)
{
lson[newroot] = update(lson[root],l,mid,pos,val);
rson[newroot] = rson[root];
}
else
{
rson[newroot] = update(rson[root],mid+,r,pos,val);
lson[newroot] = lson[root];
}
c[newroot] = c[lson[newroot]] + c[rson[newroot]];
return newroot;
} int query(int left_root, int right_root, int l, int r, int k)
{
if(l==r) return l; int mid = (l+r)>>;
if(c[lson[left_root]]-c[lson[right_root]]>=k)
return query(lson[left_root],lson[right_root],l,mid,k);
else
return query(rson[left_root],rson[right_root],mid+,r,k-(c[lson[left_root]]-c[lson[right_root]]));
} int main()
{
while(scanf("%d%d",&n,&q)!=EOF)
{
tot = ;
for(int i = ; i<=n; i++)
scanf("%d",&a[i]);
Init_hash();
T[n+] = build(,m);
for(int i = n; i; i--)
{
int pos = hash(a[i]);
T[i] = update(T[i+],,m,pos,);
}
while(q--)
{
int l, r, k;
scanf("%d%d%d",&l,&r,&k);
printf("%d\n", t[query(T[l],T[r+],,m,k)]);
}
}
}

POJ2104 K-th Number —— 静态区间第k小的更多相关文章

  1. POJ2104 K-th Number 静态区间第k最值 平方分割

    干掉这道题的那一刻,我只想说:我终于**的AC了!!! 最终内存1344K,耗时10282ms,比起归并树.划分树以及其他各种黑科技,这个成绩并不算光彩⊙﹏⊙ 但至少,从最初的无数次TLE到最终的AC ...

  2. poj2104&&poj2761 (主席树&&划分树)主席树静态区间第k大模板

    K-th Number Time Limit: 20000MS   Memory Limit: 65536K Total Submissions: 43315   Accepted: 14296 Ca ...

  3. HDU3473--Minimum Sum(静态区间第k大)

    Minimum Sum Time Limit: 16000/8000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tota ...

  4. 数据结构2 静态区间第K大/第K小

    给定数组$A[1...N]$, 区间$[L,R]$中第$K$大/小的数的指将$A[L...R]$中的数从大到小/从小到大排序后的第$K$个. "静态"指的是不带修改. 这个问题有多 ...

  5. Dynamic Rankings || 动态/静态区间第k小(主席树)

    JYF大佬说,一星期要写很多篇博客才会有人看 但是我做题没有那么快啊QwQ Part1 写在前面 区间第K小问题一直是主席树经典题=w=今天的重点是动态区间第K小问题.静态问题要求查询一个区间内的第k ...

  6. 主席树初步学习笔记(可持久化数组?静态区间第k大?)

    我接触 OI也快1年了,然而只写了3篇博客...(而且还是从DP跳到了主席树),不知道我这个机房吊车尾什么时候才能摸到大佬们的脚后跟orz... 前言:主席树这个东西,可以说是一种非常畸形的数据结构( ...

  7. 静态区间第k大(归并树)

    POJ 2104为例 思想: 利用归并排序的思想: 建树过程和归并排序类似,每个数列都是子树序列的合并与排序. 查询过程,如果所查询区间完全包含在当前区间中,则直接返回当前区间内小于所求数的元素个数, ...

  8. 主席树学习笔记(静态区间第k大)

    题目背景 这是个非常经典的主席树入门题——静态区间第K小 数据已经过加强,请使用主席树.同时请注意常数优化 题目描述 如题,给定N个整数构成的序列,将对于指定的闭区间查询其区间内的第K小值. 输入输出 ...

  9. 主席树(静态区间第k大)

    前言 如果要求一些数中的第k大值,怎么做? 可以先就这些数离散化,用线段树记录每个数字出现了多少次. ... 那么考虑用类似的方法来求静态区间第k大. 原理 假设现在要有一些数 我们可以对于每个数都建 ...

随机推荐

  1. nginx/iptables动态IP黑白名单实现方案

    nginx/iptables动态IP黑白名单实现方案 一.手动封IP步骤 1.Nginx手动封IP 1.获取各个IP访问次数 awk '{print $1}' nginx.access.log |so ...

  2. 移动端弹窗 layer.js 使用

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  3. OSX:设置用户默认浏览器

    近期我们遇到的情况是,须要统一设置用户的默认浏览器为Google Chrome.而系统默认的是Safari. 这个设置是系统Launch Services基于用户管理的. 意思就是说,即便是改动了系统 ...

  4. SpringMVC:前台jsp页面和后台传值

    前台jsp页面和后台传值的几种方式: 不用SpringMVC自带的标签 前台---->后台,通过表单传递数据(): 1.jsp页面代码如下,  modelattribute 有没有都行 < ...

  5. jenkins构建一个go项目

    Jenkins安装   最低配置: 不少于256M内存,不低于1G磁盘,jdk版本>=8 安装jdk1.8 yum install -y java-1.8.0-openjdk wget -O / ...

  6. Win8.1离线安装.Net Framework 3.5

     在线安装太慢了! 只要一个命令搞掂 不希望使用Internet连接,可以使用DISM (部署映像服务和管理工具)离线部署 .NET Framework 3.5   1. Win+X选择命令提示符(管 ...

  7. Leet Code OJ 237. Delete Node in a Linked List [Difficulty: Easy]

    题目: Write a function to delete a node (except the tail) in a singly linked list, given only access t ...

  8. DisplayPort的时钟隐藏和时钟恢复

    转:DisplayPort的时钟隐藏和时钟恢复 无时钟线的视频数据传输是DP协议的一大特点,将时钟信号隐藏在数据中是传输协议的设计趋势.时钟恢复技术也是DP芯片设计的关键技术.在这说一下在发送端时钟是 ...

  9. Key-Value键值存储原理初识(NOSQL)

    NO-Sql数据库:Not Only不仅仅是SQL 定义:非关系型数据库:NoSQL用于超大规模数据的存储.(例如谷歌或Facebook每天为他们的用户收集万亿比特的数据).这些类型的数据存储不需要固 ...

  10. 兔子--改动Android Studio的快捷键,改动成eclipse的快捷键

    仅仅须要2步 watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvdTAxMzQyNTUyNw==/font/5a6L5L2T/fontsize/400/fill ...