题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3992

(学习NTT:https://riteme.github.io/blog/2016-8-22/ntt.html

https://www.cnblogs.com/Mychael/p/9297652.html

http://blog.miskcoo.com/2015/04/polynomial-multiplication-and-fast-fourier-transform#i-15 )

首先,如果把方案数和乘积分别放在系数和次数上,就可以用多项式做了;

方案数放在系数上好说,但次数是相加的,如何表示乘积?

考虑乘积与加法的关系 —— 幂的相乘就是指数相加;

所以可以找出乘积的模数 m 的原根,用其次数相加代表乘积,这个次数好像被称为“指标”;

构造出多项式,由于要取模,所以用 NTT 做;

也就是要把初始的多项式做 n 次幂,可以用快速幂,但注意累乘起来的是系数而不是点值;

指标从0开始或从1开始都可以,也就是把 0 次方作为 1 和把 m-1 次方作为 1 的区别,对应系数的时候要根据这个注意一下(代码中注释里的方案也可);

初始化一个多项式并不是把每个系数都赋值1!而只有第0项是1,这样别的多项式乘过来还是那个多项式;

然后要特别注意读入时去掉0!因为原根系列中没有模出0的,所以以原根为基础的 NTT 算的时候不能考虑0,而反正最后要求的方案中,x >= 1,一旦有0,乘积就是0了,所以0对答案没有影响,就当没给这个数算即可;

一下午的心血...

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
int const xn=(<<),xm=,mod=;
int n,m,rev[xn],g,a[xn],b[xn],lim,r[xm],cnt,pri[xm],inv;
int rd()
{
int ret=,f=; char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=; ch=getchar();}
while(ch>=''&&ch<='')ret=(ret<<)+(ret<<)+ch-'',ch=getchar();
return f?ret:-ret;
}
int pw(ll a,int b,int md)
{
ll ret=;
for(;b;b>>=,a=(a*a)%md)if(b&)ret=(ret*a)%md;
return ret;
}
void div(int x)
{
for(int i=;i*i<=x;i++)
{
if(x%i)continue;
pri[++cnt]=i; while(x%i==)x/=i;
}
if(x>)pri[++cnt]=x;
}
void init()
{
lim=; int l=;
while(lim<=m+m)lim<<=,l++;
//while(lim<=2*(m-1))lim<<=1,l++;
for(int i=;i<lim;i++)
rev[i]=((rev[i>>]>>)|((i&)<<(l-)));
inv=pw(lim,mod-,mod); if(m==){g=; return;}
div(m-);
for(g=;;g++)
{
bool f=;
for(int j=;j<=cnt;j++)
if(pw(g,(m-)/pri[j],m)==){f=; break;}
if(!f)break;
}
for(int i=,k=g;i<m;i++,k=(ll)k*g%m)r[k]=i;
//for(int i=0,k=1;i<m-1;i++,k=(ll)k*g%m)r[k]=i;//k=1
}
int upt(int x){while(x>=mod)x-=mod; while(x<)x+=mod; return x;}
void ntt(int *a,int tp)
{
for(int i=;i<lim;i++)
if(i<rev[i])swap(a[i],a[rev[i]]);
for(int mid=;mid<lim;mid<<=)
{
int wn=pw(,(mod-)/(mid<<),mod);
if(tp==-)wn=pw(wn,mod-,mod);//
for(int j=,len=(mid<<);j<lim;j+=len)
{
int w=;
for(int k=;k<mid;k++,w=(ll)w*wn%mod)
{
int x=a[j+k],y=(ll)w*a[j+mid+k]%mod;
a[j+k]=upt(x+y); a[j+mid+k]=upt(x-y);
}
}
}
}
void pww()
{
ntt(a,);
for(int i=;i<lim;i++)a[i]=(ll)a[i]*a[i]%mod;
ntt(a,-);
for(int i=;i<lim;i++)a[i]=(ll)a[i]*inv%mod;
for(int i=m;i<lim;i++)a[i%m+]=upt(a[i%m+]+a[i]),a[i]=;//%m+1
//for(int i=m-1;i<lim;i++)a[i%(m-1)]=upt(a[i%(m-1)]+a[i]),a[i]=0;
}
void mul()
{
ntt(a,); ntt(b,);//
for(int i=;i<lim;i++)b[i]=(ll)b[i]*a[i]%mod;
ntt(a,-); ntt(b,-);//
for(int i=;i<lim;i++)
a[i]=(ll)a[i]*inv%mod,b[i]=(ll)b[i]*inv%mod; for(int i=m;i<lim;i++)
a[i%m+]=upt(a[i%m+]+a[i]),a[i]=,
b[i%m+]=upt(b[i%m+]+b[i]),b[i]=;
/*
for(int i=m-1;i<lim;i++)
a[i%(m-1)]=upt(a[i%(m-1)]+a[i]),a[i]=0,
b[i%(m-1)]=upt(b[i%(m-1)]+b[i]),b[i]=0;
*/
}
int main()
{
n=rd(); m=rd(); init();
int p=rd(),num=rd();
for(int i=,x;i<=num;i++)
{
x=rd();
if(x)a[r[x]]=;//x!=0 !!
}
int t=n;
//for(int i=0;i<lim;i++)b[i]=1;
b[]=;//!
for(;t;t>>=,pww())if(t&)mul();
printf("%d\n",b[r[p]]);
return ;
}

bzoj 3992 [SDOI2015] 序列统计 —— NTT (循环卷积+快速幂)的更多相关文章

  1. BZOJ 3992: [SDOI2015]序列统计 NTT+快速幂

    3992: [SDOI2015]序列统计 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 1155  Solved: 532[Submit][Statu ...

  2. 【BZOJ3992】[SDOI2015]序列统计 NTT+多项式快速幂

    [BZOJ3992][SDOI2015]序列统计 Description 小C有一个集合S,里面的元素都是小于M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数列中的每个数都属 ...

  3. bzoj 3992 [SDOI2015]序列统计——NTT(循环卷积&&快速幂)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3992 有转移次数.模M余数.方案数三个值,一看就是系数的地方放一个值.指数的地方放一个值.做 ...

  4. bzoj 3992: [SDOI2015]序列统计 NTT+原根

    今天开始学习丧心病狂的多项式qaq......    . code: #include <bits/stdc++.h> #define ll long long #define setIO ...

  5. BZOJ 3992: [SDOI2015]序列统计 快速幂+NTT(离散对数下)

    3992: [SDOI2015]序列统计 Description 小C有一个集合S,里面的元素都是小于M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数列中的每个数都属于集合S ...

  6. BZOJ 3992: [SDOI2015]序列统计 [快速数论变换 生成函数 离散对数]

    3992: [SDOI2015]序列统计 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 1017  Solved: 466[Submit][Statu ...

  7. [BZOJ 3992][SDOI2015]序列统计

    3992: [SDOI2015]序列统计 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 2275  Solved: 1090[Submit][Stat ...

  8. bzoj 3992: [SDOI2015]序列统计【原根+生成函数+NTT+快速幂】

    还是没有理解透原根--题目提示其实挺明显的,M是质数,然后1<=x<=M-1 这种计数就容易想到生成函数,但是生成函数是加法,而这里是乘法,所以要想办法变成加法 首先因为0和任何数乘都是0 ...

  9. BZOJ.3992.[SDOI2015]序列统计(DP NTT 原根)

    题目链接 \(Description\) 给定\(n,m,x\)和集合\(S\).求\(\prod_{i=1}^na_i\equiv x\ (mod\ m)\)的方案数.其中\(a_i\in S\). ...

随机推荐

  1. Unity3D:Gizmos画圆(原创)

    Unity3D引擎技术交流QQ群:[21568554] Gizmos是场景视图里的一个可视化调试工具. 在做项目过程中.我们常常会用到它,比如:绘制一条射线等. Unity3D 4.2版本号截至.眼下 ...

  2. java数据库连接池简单实现

    package cn.lmj.utils; import java.io.PrintWriter; import java.lang.reflect.InvocationHandler; import ...

  3. hql 时间

    1.hql中时间格式转换 SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss"); String d ...

  4. Effective C++ 条款一 视C++为一个语音联邦

    1.C语言         区块.语句.预处理器.内置数据类型.数组.指针等内容 2.OC++       类.封装.继承.多态.virtual函数 等 3.Template C++       泛型 ...

  5. WPF02(concept)

    (转自http://www.cnblogs.com/huangxincheng/archive/2012/06/17/2552322.html)这些天从项目上接触到了wpf,感觉有必要做一个笔记,首篇 ...

  6. UITableView 自带编辑删除 自己定义button

    一:UITableView 自带编辑删除 1:实现两个方法就可以 #pragma mark   tableView自带的编辑功能 -(void)tableView:(UITableView *)tab ...

  7. Android添加系统级顶层窗口 和 WindowManager添加view的动画问题

    当Dialog有编辑框时如果选择会弹菜单窗口就不要用 Context applicationContext = mainActivity.getApplicationContext(); AlertD ...

  8. 第 1 章 第 2 题 空间敏感排序问题 位向量实现( bitset位向量 )

    问题分析 在上篇文章中,给出了使用C语言中经典位运算符来实现位向量的方法.而本文,将介绍使用C++中的bitset容器来实现位向量的方法. 实现 // 请包含bitset头文件 #include &l ...

  9. android arcmenu

    http://www.kankanews.com/ICkengine/archives/129193.shtml

  10. numpy函数库中一些经常使用函数的记录

    ##numpy函数库中一些经常使用函数的记录 近期才開始接触python,python中为我们提供了大量的库,不太熟悉.因此在<机器学习实战>的学习中,对遇到的一些函数的使用方法进行记录. ...