题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3992

(学习NTT:https://riteme.github.io/blog/2016-8-22/ntt.html

https://www.cnblogs.com/Mychael/p/9297652.html

http://blog.miskcoo.com/2015/04/polynomial-multiplication-and-fast-fourier-transform#i-15 )

首先,如果把方案数和乘积分别放在系数和次数上,就可以用多项式做了;

方案数放在系数上好说,但次数是相加的,如何表示乘积?

考虑乘积与加法的关系 —— 幂的相乘就是指数相加;

所以可以找出乘积的模数 m 的原根,用其次数相加代表乘积,这个次数好像被称为“指标”;

构造出多项式,由于要取模,所以用 NTT 做;

也就是要把初始的多项式做 n 次幂,可以用快速幂,但注意累乘起来的是系数而不是点值;

指标从0开始或从1开始都可以,也就是把 0 次方作为 1 和把 m-1 次方作为 1 的区别,对应系数的时候要根据这个注意一下(代码中注释里的方案也可);

初始化一个多项式并不是把每个系数都赋值1!而只有第0项是1,这样别的多项式乘过来还是那个多项式;

然后要特别注意读入时去掉0!因为原根系列中没有模出0的,所以以原根为基础的 NTT 算的时候不能考虑0,而反正最后要求的方案中,x >= 1,一旦有0,乘积就是0了,所以0对答案没有影响,就当没给这个数算即可;

一下午的心血...

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
int const xn=(<<),xm=,mod=;
int n,m,rev[xn],g,a[xn],b[xn],lim,r[xm],cnt,pri[xm],inv;
int rd()
{
int ret=,f=; char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=; ch=getchar();}
while(ch>=''&&ch<='')ret=(ret<<)+(ret<<)+ch-'',ch=getchar();
return f?ret:-ret;
}
int pw(ll a,int b,int md)
{
ll ret=;
for(;b;b>>=,a=(a*a)%md)if(b&)ret=(ret*a)%md;
return ret;
}
void div(int x)
{
for(int i=;i*i<=x;i++)
{
if(x%i)continue;
pri[++cnt]=i; while(x%i==)x/=i;
}
if(x>)pri[++cnt]=x;
}
void init()
{
lim=; int l=;
while(lim<=m+m)lim<<=,l++;
//while(lim<=2*(m-1))lim<<=1,l++;
for(int i=;i<lim;i++)
rev[i]=((rev[i>>]>>)|((i&)<<(l-)));
inv=pw(lim,mod-,mod); if(m==){g=; return;}
div(m-);
for(g=;;g++)
{
bool f=;
for(int j=;j<=cnt;j++)
if(pw(g,(m-)/pri[j],m)==){f=; break;}
if(!f)break;
}
for(int i=,k=g;i<m;i++,k=(ll)k*g%m)r[k]=i;
//for(int i=0,k=1;i<m-1;i++,k=(ll)k*g%m)r[k]=i;//k=1
}
int upt(int x){while(x>=mod)x-=mod; while(x<)x+=mod; return x;}
void ntt(int *a,int tp)
{
for(int i=;i<lim;i++)
if(i<rev[i])swap(a[i],a[rev[i]]);
for(int mid=;mid<lim;mid<<=)
{
int wn=pw(,(mod-)/(mid<<),mod);
if(tp==-)wn=pw(wn,mod-,mod);//
for(int j=,len=(mid<<);j<lim;j+=len)
{
int w=;
for(int k=;k<mid;k++,w=(ll)w*wn%mod)
{
int x=a[j+k],y=(ll)w*a[j+mid+k]%mod;
a[j+k]=upt(x+y); a[j+mid+k]=upt(x-y);
}
}
}
}
void pww()
{
ntt(a,);
for(int i=;i<lim;i++)a[i]=(ll)a[i]*a[i]%mod;
ntt(a,-);
for(int i=;i<lim;i++)a[i]=(ll)a[i]*inv%mod;
for(int i=m;i<lim;i++)a[i%m+]=upt(a[i%m+]+a[i]),a[i]=;//%m+1
//for(int i=m-1;i<lim;i++)a[i%(m-1)]=upt(a[i%(m-1)]+a[i]),a[i]=0;
}
void mul()
{
ntt(a,); ntt(b,);//
for(int i=;i<lim;i++)b[i]=(ll)b[i]*a[i]%mod;
ntt(a,-); ntt(b,-);//
for(int i=;i<lim;i++)
a[i]=(ll)a[i]*inv%mod,b[i]=(ll)b[i]*inv%mod; for(int i=m;i<lim;i++)
a[i%m+]=upt(a[i%m+]+a[i]),a[i]=,
b[i%m+]=upt(b[i%m+]+b[i]),b[i]=;
/*
for(int i=m-1;i<lim;i++)
a[i%(m-1)]=upt(a[i%(m-1)]+a[i]),a[i]=0,
b[i%(m-1)]=upt(b[i%(m-1)]+b[i]),b[i]=0;
*/
}
int main()
{
n=rd(); m=rd(); init();
int p=rd(),num=rd();
for(int i=,x;i<=num;i++)
{
x=rd();
if(x)a[r[x]]=;//x!=0 !!
}
int t=n;
//for(int i=0;i<lim;i++)b[i]=1;
b[]=;//!
for(;t;t>>=,pww())if(t&)mul();
printf("%d\n",b[r[p]]);
return ;
}

bzoj 3992 [SDOI2015] 序列统计 —— NTT (循环卷积+快速幂)的更多相关文章

  1. BZOJ 3992: [SDOI2015]序列统计 NTT+快速幂

    3992: [SDOI2015]序列统计 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 1155  Solved: 532[Submit][Statu ...

  2. 【BZOJ3992】[SDOI2015]序列统计 NTT+多项式快速幂

    [BZOJ3992][SDOI2015]序列统计 Description 小C有一个集合S,里面的元素都是小于M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数列中的每个数都属 ...

  3. bzoj 3992 [SDOI2015]序列统计——NTT(循环卷积&&快速幂)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3992 有转移次数.模M余数.方案数三个值,一看就是系数的地方放一个值.指数的地方放一个值.做 ...

  4. bzoj 3992: [SDOI2015]序列统计 NTT+原根

    今天开始学习丧心病狂的多项式qaq......    . code: #include <bits/stdc++.h> #define ll long long #define setIO ...

  5. BZOJ 3992: [SDOI2015]序列统计 快速幂+NTT(离散对数下)

    3992: [SDOI2015]序列统计 Description 小C有一个集合S,里面的元素都是小于M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数列中的每个数都属于集合S ...

  6. BZOJ 3992: [SDOI2015]序列统计 [快速数论变换 生成函数 离散对数]

    3992: [SDOI2015]序列统计 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 1017  Solved: 466[Submit][Statu ...

  7. [BZOJ 3992][SDOI2015]序列统计

    3992: [SDOI2015]序列统计 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 2275  Solved: 1090[Submit][Stat ...

  8. bzoj 3992: [SDOI2015]序列统计【原根+生成函数+NTT+快速幂】

    还是没有理解透原根--题目提示其实挺明显的,M是质数,然后1<=x<=M-1 这种计数就容易想到生成函数,但是生成函数是加法,而这里是乘法,所以要想办法变成加法 首先因为0和任何数乘都是0 ...

  9. BZOJ.3992.[SDOI2015]序列统计(DP NTT 原根)

    题目链接 \(Description\) 给定\(n,m,x\)和集合\(S\).求\(\prod_{i=1}^na_i\equiv x\ (mod\ m)\)的方案数.其中\(a_i\in S\). ...

随机推荐

  1. DIV浮动IE文本产生3象素的bug

    描写叙述:DIV浮动IE文本产生3象素的bug    左边对象浮动.右边採用外补丁的左边距来定位,右边对象(div)会离左边有3px的间距 复现:在开发者工具里把文本模式设置了杂项后会出现3像素的bu ...

  2. 关于在 C#中无法静态库引用的解决方法

    在VS中用C#写了个类库,后面想转成静态库发现没有直接的方法,原来在C++中可以,而C#中不支持. 但是有时候程序引用C#编写的动态库觉得用户体验不好太累赘,想要简单只发一个exe可执行程序给用户就好 ...

  3. Nginx优化指南+LINUX内核优化+linux连接数优化+nginx连接数优化

    Most setup guides for Nginx tell you the basics - apt-get a package, modify a few lines here and the ...

  4. crtmp Server 开启rtsp服务功能

    Crtmp Server 包含了rtsp 服务功能,如果需要一个简单轻量的rtsp服务,Crtmp Server会是不错的选择. 默认情况下,rtsp功能是关闭的,需要在配置文件中打开.window环 ...

  5. Cocos2d-X中的粒子

    Cocos2d-x引擎提供了强大的type=cocos2d-x&url=/doc/cocos-docs-master/manual/framework/native/v3/particle-s ...

  6. Anyoffice -HTML5大赛 悦心(基于H5开发安卓音乐app)-项目总结

    项目在线演示地址:http://rose111.applinzi.com/ github 地址:欢迎star https://github.com/midoxinxin/YueX-Music 悦心,一 ...

  7. C++入门一

    C++ 项目结构 Resource Files: 项目引用的位图文件,图标,窗口,光标等.比如,你的程序要生成一个exe文件,而文件的图标是你自定义的图标,那就要在这个工程里面添加Icon资源,添加一 ...

  8. Spring里bean之间的循环依赖解决与源码解读

    通过前几节的分析,已经成功将bean实例化,但是大家一定要将bean的实例化和完成bean的创建区分开,bean的实例化仅仅是获得了bean的实例,该bean仍在继续创建之中,之后在该bean实例的基 ...

  9. oracle ORA-06550

    declare  cnt integer; begin     select count(0)     into cnt     from user_all_tables    where table ...

  10. wlpt的提现功能

    1.<transaction id="WithdrawPre" template="pageLoaderTemplate"> <actions ...