lucas定理 +证明 学习笔记
lucas定理
p为素数
\[\dbinom n m\equiv\dbinom {n\%p} {m\%p} \dbinom {n/p}{m/p}(mod p)\]
左边一项直接求,右边可递归处理,不包含求组合数复杂度是\(log_p(m)\)
证明
我们记\(n=sp+q,m=tp+r,(q,r<p)\)
\[\dbinom {sp+q} {tp+r} \equiv \dbinom {s} {t} \dbinom {q} {r} (mod p)\]
有这么一个性质\(\binom p d\equiv0,0<d<p\)
我们考虑使用幂来检验
利用扰动法(算两次)的思想
\[
\begin{aligned}
(1+x)^n&\equiv(1+x)^q*[(1+x)^p]^s (mod p)\\
&\equiv(1+x)^q*[\sum_{t=0}^p \binom p i x^i]^s(mod p)\\
根据上面的那个性质\\
&\equiv(1+x)^q*(1+x^p)^s(mod p)\\
&\equiv\sum_{i=0}^s \binom s i x^{pt} * \sum_{j=0}^q\binom q j x^j(mod p)\\
则有\\
(1+x)^{sp+q}&\equiv\sum_{i=0}^s \binom s i x^{pt} * \sum_{j=0}^q\binom q j x^j(mod p)\\
\sum_{k=0}^{sp+q}\binom {sp+q} {k} x^k&\equiv\sum_{i=0}^s \binom s i x^{pt} * \sum_{j=0}^q\binom q j x^j(mod p)\\
左边x^{tp+r}的系数为\binom {sp+q}{tp+r}&\\
右边x^{tp+r}的系数为\binom s t\binom q r &(因为q<p)\\
系数在mod意义下相等\\
得证
\end{aligned}
\]
推广
利用\(lucas\)定理可以\(O(p)\)预处理逆元+\(O(log_p(n))\)回答询问
那么p为合数呢?
1.如果p较小
方法1:
\(O(p)\)预处理出\(p\)内的素数,共\(\frac P {ln P}\)个
询问时扫一次素数
求出n,m,n-m中含有该素数多少个,求一个素数出现多少次要翻倍log次
复杂度\(\frac P {ln P}*\log n\approx n\)
方法2:
将p分解质因数,每个lucas求一次,再用中国剩余定理
2.如果p较大:
有一篇FFT快速求n!的方法
布吉岛有没有用
先 挖坑
lucas定理 +证明 学习笔记的更多相关文章
- [Lucas定理]【学习笔记】
Lucas定理 [原文]2017-02-14 [update]2017-03-28 Lucas定理 计算组合数取模,适用于n很大p较小的时候,可以将计算简化到小于p $ \binom{n}{m} \m ...
- lucas定理证明
Lucas 定理(证明) A.B是非负整数,p是质数.AB写成p进制:A=a[n]a[n-1]...a[0],B=b[n]b[n-1]...b[0]. 则组合数C(A,B)与C(a[n],b[n])* ...
- 【luogu P3807】【模板】卢卡斯定理/Lucas 定理(含 Lucas 定理证明)
[模板]卢卡斯定理/Lucas 定理 题目链接:luogu P3807 题目大意 求 C(n,n+m)%p 的值. p 保证是质数. 思路 Lucas 定理内容 对于非负整数 \(n\),\(m\), ...
- 【转】Lucas定理 & 逆元学习小结
(From:离殇灬孤狼) 这个Lucas定理是解决组合数的时候用的,当然是比较大的组合数了.比如C(1000000,50000)% mod,这个mod肯定是要取的,要不算出来真的是天文数字了. 对于一 ...
- Note -「矩阵树定理」学习笔记
大概--会很简洁吧 qwq. 矩阵树定理 对于无自环无向图 \(G=(V,E)\),令其度数矩阵 \(D\),邻接矩阵 \(A\),令该图的 \(\text{Kirchhoff}\) 矩阵 \ ...
- 大组合数:Lucas定理
最近碰到一题,问你求mod (p1*p2*p3*……*pl) ,其中n和m数据范围是1~1e18 , l ≤10 , pi ≤ 1e5为不同的质数,并保证M=p1*p2*p3*……*pl ≤ 1e18 ...
- Lucas定理学习笔记
从这里开始 一个有趣的问题 扩展Lucas算法 一个有趣的问题 题目大意 给定$n, m, p$,求$C_{n}^{m}$除以$p$后的余数. Subtask#1 $0\leqslant m\leq ...
- 【算法学习笔记】组合数与 Lucas 定理
卢卡斯定理是一个与组合数有关的数论定理,在算法竞赛中用于求组合数对某质数的模. 第一部分是博主的个人理解,第二部分为 Pecco 学长的介绍 第一部分 一般情况下,我们计算大组合数取模问题是用递推公式 ...
- [学习笔记]扩展LUCAS定理
可以先做这个题[SDOI2010]古代猪文 此算法和LUCAS定理没有半毛钱关系. [模板]扩展卢卡斯 不保证P是质数. $C_n^m=\frac{n!}{m!(n-m)!}$ 麻烦的是分母. 如果互 ...
随机推荐
- python-下拉框
首先,从selenium.webdriver.support.ui里调用Select类,如下: 其次,找到下拉框元素,再找下拉框里要最终选择的元素,如下: 注意:调用Select类后,不必再加clic ...
- (转发)InputAccessoryView的使用方法
转自:http://blog.sina.com.cn/s/blog_45e2b66c01015we9.html UITextFields and UITextViews have an inputAc ...
- java 会话跟踪技术
1.session用来表示用户会话,session对象在服务端维护,一般tomcat设定session生命周期为30分钟,超时将失效,也可以主动设置无效: 2.cookie存放在客户端,可以分为内存c ...
- (73)zabbix用户认证方式 内建、HTTP Basic、LDAP
公司大大小小众多系统,不同系统不同的账号密码,管理上相当复杂,后来慢慢出现了SSO等账号统一验证,其他zabbix也提供了类似的方法,或许有些公司便可以使用公司提供的账号来登录zabbix了. zab ...
- 【Python学习之六】高阶函数2(map、reduce、filter、sorted)
3.filter filter()也接收一个函数和一个序列.和map()不同的是,filter()把传入的函数依次作用于每个元素,然后根据返回值是True还是False决定保留还是丢弃该元素.相当于一 ...
- MySQL查询时,查询结果如何按照where in数组排序
MySQL查询时,查询结果如何按照where in数组排序 在查询中,MySQL默认是order by id asc排序的,但有时候需要按照where in 的数组顺序排序,比如where in的id ...
- nginx静态资源web服务
静态资源:非服务器动态运行生成的文件 浏览器端渲染:html ,css,js 图片:jpeg,gif,png 视频:flv ,mpeg 文件:txt,等任意下载文件 静态资源服务场景:CDN 文件读取 ...
- Django之模型---ORM 单表操作
以上一随笔中创建的book表为例讲解单表操作 添加表记录 方式一 # create方法的返回值book_obj就是插入book表中的python葵花宝典这本书籍纪录对象 book_obj=Book.o ...
- for_each_node(node)
遍历各个pg_data_t节点. 1.定义在include/linux/nodemask.h中 /* * Bitmasks that are kept for all the nodes. */ en ...
- Aizu 2450 Do use segment tree 树链剖分
题意: 给出一棵\(n(1 \leq n \leq 200000)\)个节点的树,每个节点有一个权值. 然后有\(2\)种操作: \(1 \, a \, b \, c\):将路径\(a \to b\) ...