lucas定理

p为素数
\[\dbinom n m\equiv\dbinom {n\%p} {m\%p} \dbinom {n/p}{m/p}(mod p)\]
左边一项直接求,右边可递归处理,不包含求组合数复杂度是\(log_p(m)\)

证明

我们记\(n=sp+q,m=tp+r,(q,r<p)\)
\[\dbinom {sp+q} {tp+r} \equiv \dbinom {s} {t} \dbinom {q} {r} (mod p)\]
有这么一个性质\(\binom p d\equiv0,0<d<p\)

我们考虑使用幂来检验
利用扰动法(算两次)的思想
\[
\begin{aligned}
(1+x)^n&\equiv(1+x)^q*[(1+x)^p]^s (mod p)\\
&\equiv(1+x)^q*[\sum_{t=0}^p \binom p i x^i]^s(mod p)\\
根据上面的那个性质\\
&\equiv(1+x)^q*(1+x^p)^s(mod p)\\
&\equiv\sum_{i=0}^s \binom s i x^{pt} * \sum_{j=0}^q\binom q j x^j(mod p)\\
则有\\
(1+x)^{sp+q}&\equiv\sum_{i=0}^s \binom s i x^{pt} * \sum_{j=0}^q\binom q j x^j(mod p)\\
\sum_{k=0}^{sp+q}\binom {sp+q} {k} x^k&\equiv\sum_{i=0}^s \binom s i x^{pt} * \sum_{j=0}^q\binom q j x^j(mod p)\\
左边x^{tp+r}的系数为\binom {sp+q}{tp+r}&\\
右边x^{tp+r}的系数为\binom s t\binom q r &(因为q<p)\\
系数在mod意义下相等\\
得证
\end{aligned}
\]

推广

利用\(lucas\)定理可以\(O(p)\)预处理逆元+\(O(log_p(n))\)回答询问
那么p为合数呢?
1.如果p较小
方法1:
\(O(p)\)预处理出\(p\)内的素数,共\(\frac P {ln P}\)个
询问时扫一次素数
求出n,m,n-m中含有该素数多少个,求一个素数出现多少次要翻倍log次
复杂度\(\frac P {ln P}*\log n\approx n\)
方法2:
将p分解质因数,每个lucas求一次,再用中国剩余定理
2.如果p较大:
有一篇FFT快速求n!的方法
布吉岛有没有用
先 挖坑

lucas定理 +证明 学习笔记的更多相关文章

  1. [Lucas定理]【学习笔记】

    Lucas定理 [原文]2017-02-14 [update]2017-03-28 Lucas定理 计算组合数取模,适用于n很大p较小的时候,可以将计算简化到小于p $ \binom{n}{m} \m ...

  2. lucas定理证明

    Lucas 定理(证明) A.B是非负整数,p是质数.AB写成p进制:A=a[n]a[n-1]...a[0],B=b[n]b[n-1]...b[0]. 则组合数C(A,B)与C(a[n],b[n])* ...

  3. 【luogu P3807】【模板】卢卡斯定理/Lucas 定理(含 Lucas 定理证明)

    [模板]卢卡斯定理/Lucas 定理 题目链接:luogu P3807 题目大意 求 C(n,n+m)%p 的值. p 保证是质数. 思路 Lucas 定理内容 对于非负整数 \(n\),\(m\), ...

  4. 【转】Lucas定理 & 逆元学习小结

    (From:离殇灬孤狼) 这个Lucas定理是解决组合数的时候用的,当然是比较大的组合数了.比如C(1000000,50000)% mod,这个mod肯定是要取的,要不算出来真的是天文数字了. 对于一 ...

  5. Note -「矩阵树定理」学习笔记

      大概--会很简洁吧 qwq. 矩阵树定理   对于无自环无向图 \(G=(V,E)\),令其度数矩阵 \(D\),邻接矩阵 \(A\),令该图的 \(\text{Kirchhoff}\) 矩阵 \ ...

  6. 大组合数:Lucas定理

    最近碰到一题,问你求mod (p1*p2*p3*……*pl) ,其中n和m数据范围是1~1e18 , l ≤10 , pi ≤ 1e5为不同的质数,并保证M=p1*p2*p3*……*pl ≤ 1e18 ...

  7. Lucas定理学习笔记

    从这里开始 一个有趣的问题 扩展Lucas算法 一个有趣的问题 题目大意 给定$n, m, p$,求$C_{n}^{m}$除以$p$后的余数. Subtask#1  $0\leqslant m\leq ...

  8. 【算法学习笔记】组合数与 Lucas 定理

    卢卡斯定理是一个与组合数有关的数论定理,在算法竞赛中用于求组合数对某质数的模. 第一部分是博主的个人理解,第二部分为 Pecco 学长的介绍 第一部分 一般情况下,我们计算大组合数取模问题是用递推公式 ...

  9. [学习笔记]扩展LUCAS定理

    可以先做这个题[SDOI2010]古代猪文 此算法和LUCAS定理没有半毛钱关系. [模板]扩展卢卡斯 不保证P是质数. $C_n^m=\frac{n!}{m!(n-m)!}$ 麻烦的是分母. 如果互 ...

随机推荐

  1. angular设置反向代理

    本地调试,需要用到服务器的api,发现chrome安全问题,需要解决跨域问题.现给出解决方案: 1.增加proxy.conf.json文件 位置与package.json文件同级(可指定) 2.pac ...

  2. Java(面试题):字符串截取

    在Java中,字符串“abcd”与字符串“ab你好”的长度是一样,都是四个字符. 但对应的字节数不同,一个汉字占两个字节. 定义一个方法,按照指定的字节数来取子串. 如:对于“ab你好”,如果取三个字 ...

  3. [转]LLE

    原始特征的数量可能很大,或者说样本是处于一个高维空间中,通过映射或变换的方法,降高维数据降低到低维空间中的数据,这个过程叫特征提取,也称降维. 特征提取得基本任务研究从众多特征中求出那些对分类最有效的 ...

  4. PostgreSQL学习(1)-- 安装pageinspect extension

    1.源码编译 pageinspect的源码在postgre源码包的contrib目录下,解压postgre源码包后进入对应的目录. [root@localhost pageinspect]# pwd ...

  5. POJ-1426-Find the multiply

    这题深搜广搜都可以做,深搜的做法就是把每个由1 和 0 组成的数字拓展10倍以及拓展10倍+1,然后压入队列. 这样可以走过所有由10组成的数字,且两个方向平行发展(*10  +0和+1). bfs ...

  6. Jenkins注意点

    这里要填写 在 Linux 上 生成的 git 私钥 并且带上  前后 注释 ------start -----      ---end -------

  7. mysql 的 case when 用法

    正确的格式: case when condition then result when condition then result when condition then result else re ...

  8. 《linux设备驱动开发详解》笔记——10中断与时钟

    10.1 中断与定时器 中断一般有如下类型: 内部中断和外部中断:内部中断来自CPU,例如软件中断指令.溢出.除0错误等:外部中断有外部设备触发 可屏蔽中断和不可屏蔽中断 向量中断和非向量中断,ARM ...

  9. Python语言程序设计之二--用turtle库画围棋棋盘和正、余弦函数图形

    这篇笔记依然是在做<Python语言程序设计>第5章循环的习题.其中有两类问题需要记录下来. 第一是如何画围棋棋盘.围棋棋盘共有19纵19横.其中,位于(0,0)的星位叫天元,其余8个星位 ...

  10. leetcode-6-basic

    解题思路: 这道题真实地反映了我今晚有多脑残=.=只需要从根号N开始向前找,第一个能被N整除的数就是width,然后存到结果就 可以了.因为离根号N越近,width越大,与length的差越小. ve ...