P1306 斐波那契公约数

题目描述

对于Fibonacci数列:1,1,2,3,5,8,13......大家应该很熟悉吧~~~但是现在有一个很“简单”问题:第n项和第m项的最大公约数是多少?

输入输出格式

输入格式:

两个正整数n和m。(n,m<=10^9)

注意:数据很大

输出格式:

Fn和Fm的最大公约数。

由于看了大数字就头晕,所以只要输出最后的8位数字就可以了。

输入输出样例

输入样例#1:

4 7
输出样例#1:

1

说明

用递归&递推会超时

用通项公式也会超时

矩阵乘法优化斐波那契

斐波那契数列的一个小性质:gcd(f[i],f[j])=f[gcd(i,j)]

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define mod 100000000
using namespace std;
int n,m,gcd;
int read()
{
    ,f=; char ch=getchar();
    ;ch=getchar();}
    +ch-',ch=getchar();
    return x*f;
}
struct Node
{
    ][];
    Node(){memset(m,,sizeof(m));}
}mb,ans;
int GCD(int a,int b)
{
    ) return a;
    return GCD(b,a%b);
}
Node operator*(Node a,Node b)
{
    Node c;
    ;i<=;i++)
     ;j<=;j++)
      ;k<=;k++)
       c.m[i][j]=(c.m[i][j]%mod+a.m[i][k]*b.m[k][j]%mod)%mod;
    return c;
}
int main()
{
    n=read(),m=read();
    gcd=GCD(n,m);
    mb.m[][]=mb.m[][]=mb.m[][]=;
    ans.m[][]=ans.m[][]=;
    while(gcd)
    {
        &gcd) ans=ans*mb;
        mb=mb*mb;gcd>>=;
    }
    cout<<ans.m[][];
    ;
}

洛谷——P1306 斐波那契公约数的更多相关文章

  1. 洛谷 P1306 斐波那契公约数

    洛谷 P1306 斐波那契公约数 题目描述 对于Fibonacci数列:1,1,2,3,5,8,13......大家应该很熟悉吧~~~但是现在有一个很“简单”问题:第n项和第m项的最大公约数是多少? ...

  2. 洛谷 P1306 斐波那契公约数 解题报告

    P1306 斐波那契公约数 题意:求\(Fibonacci\)数列第\(n\)项和第\(m\)项的最大公约数的最后8位. 数据范围:\(1<=n,m<=10^9\) 一些很有趣的性质 引理 ...

  3. 洛谷- P1306 斐波那契公约数 - 矩阵快速幂 斐波那契性质

    P1306 斐波那契公约数:https://www.luogu.org/problemnew/show/P1306 这道题目就是求第n项和第m项的斐波那契数字,然后让这两个数求GCD,输出答案的后8位 ...

  4. 洛谷P1306 斐波那契公约数

    题目描述 对于Fibonacci数列:1,1,2,3,5,8,13......大家应该很熟悉吧~~~但是现在有一个很“简单”问题:第n项和第m项的最大公约数是多少? 输入输出格式 输入格式: 两个正整 ...

  5. 洛谷 P1306 斐波那契公约数 题解

    题面 结论:gcd(F[n],F[m])=F[gcd(n,m)]; F[n]=a和F[n+1]=b F[n+2]=a+b,F[n+3]=a+2b,…F[m]=F[m?n?1]a+F[m?n]b F[n ...

  6. 洛谷P1962 斐波那契数列【矩阵运算】

    洛谷P1962 斐波那契数列[矩阵运算] 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) ( ...

  7. 洛谷P3938 斐波那契

    题目戳 题目描述 小 C 养了一些很可爱的兔子. 有一天,小 C 突然发现兔子们都是严格按照伟大的数学家斐波那契提出的模型来进行 繁衍:一对兔子从出生后第二个月起,每个月刚开始的时候都会产下一对小兔子 ...

  8. P1306 斐波那契公约数

    题目描述 对于Fibonacci数列:1,1,2,3,5,8,13......大家应该很熟悉吧~~~但是现在有一个很“简单”问题:第n项和第m项的最大公约数是多少? 输入输出格式 输入格式: 两个正整 ...

  9. 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]

    P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...

随机推荐

  1. Go语言之反射(三)

    结构体转JSON JSON格式是一种用途广泛的对象文本格式.在Go语言中,结构体可以通过系统提供的json.Marshal()函数进行序列化.为了演示怎么样通过反射获取结构体成员以及各种值的过程,下面 ...

  2. vue --子父组件传值

    1.父组件可以使用 props 把数据传给子组件. 2.子组件可以使用 $emit 触发父组件的自定义事件. vm.$emit( event, arg ) //触发当前实例上的事件 vm.$on( e ...

  3. Sentry 错误监控

    错误监控:https://sentry.io 支持语言或平台: 

  4. axure rp教程(四)动态面板滑动效果

    转载自: http://www.iaxure.com/74.html 实现目标: 1.  点击登录滑出登录面板 2.  点击确定滑出动态面板 最终效果如下: 这种效果可以通过两种方法实现: 首先准备需 ...

  5. IE下Date.parse出现NaN有关问题解决

    IE不支持"2000-01-01"这种格式的,但是谷歌浏览器支持,改成"2000/01/01"就可以了. 下面的方法两种浏览器就就都支持了 Date.parse ...

  6. 使用 Bullet,BulletManager 在 XNA 中创建子弹攻击目标(十五)

    平方已经开发了一些 Windows Phone 上的一些游戏,算不上什么技术大牛.在这里分享一下经验,仅为了和各位朋友交流经验.平方会逐步将自己编写的类上传到托管项目中,没有什么好名字,就叫 WPXN ...

  7. Java类和对象 详解(一)---写的很好通俗易懂---https://blog.csdn.net/wei_zhi/article/details/52745268

    https://blog.csdn.net/wei_zhi/article/details/52745268

  8. CSU-2046: sequence

    CSU-2046: sequence Description 给出一个长度为N的正整数序列a,你有两种变换操作: 1.把数列中的某个数乘 2. 2.把数列中的所有数减 1. 现在你需要通过最少的变换操 ...

  9. PAT——乙级1001and1011

    准备明年年初考PAT,练题呀,暂且先把LeetCode放下. 我是按照算法笔记这个教材刷的. B1001 1001 害死人不偿命的(3n+1)猜想 (15 point(s)) 卡拉兹(Callatz) ...

  10. django orm 基本Field介绍

    ORM:object relational mapping,对象关系映射 django中使用原生sql的弊端: 1.SQL语句重复率很高,利用率不高 2.如果业务逻辑生变,原生SQL更改起来比较多 3 ...