需要滚动优化或者short int卡空间

Description

  有n根木棍, 第i根木棍的长度为Li,n根木棍依次连结了一起, 总共有n-1个连接处. 现在允许你最多砍断m个连
接处, 砍完后n根木棍被分成了很多段,要求满足总长度最大的一段长度最小, 并且输出有多少种砍的方法使得总长
度最大的一段长度最小. 并将结果mod 10007。。。

Input

  输入文件第一行有2个数n,m.接下来n行每行一个正整数Li,表示第i根木棍的长度.n<=50000,0<=m<=min(n-1,10
00),1<=Li<=1000.

Output

  输出有2个数, 第一个数是总长度最大的一段的长度最小值, 第二个数是有多少种砍的方法使得满足条件.

Sample Input

3 2
1
1
10

Sample Output

10 2

HINT

两种砍的方法: (1)(1)(10)和(1 1)(10)


题目分析

昨天做到这道题的稍微强化版:允许空集存在。我那题想法是,强制没有空集,最后再用组合数统计答案。状态$f[i][j]$表示前$i$个数分为$j$个非空集合的方案数,$t[i]$表示最小能够与$i$合并的位置。于是$f[i][j]=\sum_{x=t[i]}^{i}{f[i][j-1]}$。这里有一个$\sum_{i}{f[i][j]}$的形式,自然用前缀和优化。

组合数溢出调了好久……

 #include<bits/stdc++.h>
const int maxn = ;
const int MO = ; int n,m,mxBound,mnBound,ans;
int a[maxn],s[maxn],t[maxn],g[maxn][maxn];
int f[maxn][maxn];
int C[maxn][maxn]; int read()
{
char ch = getchar();
int num = ;
bool fl = ;
for (; !isdigit(ch); ch = getchar())
if (ch=='-') fl = ;
for (; isdigit(ch); ch = getchar())
num = (num<<)+(num<<)+ch-;
if (fl) num = -num;
return num;
}
bool check(int x)
{
int cnt = , sum = ;
for (int i=; i<=n; i++)
if (sum+a[i] > x) sum = a[i], cnt++;
else sum += a[i];
return cnt <= m;
}
int qmi(int a, int b)
{
int ret = ;
while (b)
{
if (b&) ret = 1ll*ret*a%MO;
a = 1ll*a*a%MO, b >>= ;
}
return ret;
}
int main()
{
// freopen("ex_t2.in","r",stdin);
n = read(), m = read(), C[][] = ;
for (int i=; i<=m; i++)
{
C[i][] = ;
for (int j=; j<=i; j++)
C[i][j] = (C[i-][j]+C[i-][j-])%MO;
}
for (int i=; i<=n; i++)
a[i] = read(), mxBound += a[i], mnBound = mnBound < a[i]?a[i]:mnBound, s[i] = s[i-]+a[i];
int l = mnBound, r = mxBound, head = , tot = ;
for (int mid=(l+r)>>; l<=r; mid=(l+r)>>)
if (check(mid)) ans = mid, r = mid-;
else l = mid+;
printf("%d\n",ans);
for (int i=; i<=n; i++)
{
tot += a[i];
while (tot > ans) tot -= a[head++];
t[i] = head;
}
g[][] = f[][] = , ans = ;
for (int i=; i<=n; i++)
{
g[i][] = ;
for (int j=; j<=m; j++)
{
int delta = g[i-][j-];
if (t[i]>) delta -= g[t[i]-][j-];
(f[i][j] += 1ll*delta+MO) %= MO;
(g[i][j] = 1ll*g[i-][j]+1ll*f[i][j]) %= MO;
}
}
for (int i=; i<=m; i++)
ans = (ans+1ll*C[m][i]*f[n][i])%MO;
printf("%d\n",ans);
return ;
}

但是强化版空间512M,这题却只有162M。

首当其冲想到滚动数组优化,不过由于在这题里滚动数组需要把$j$放在枚举的外层,因此在一些奇怪的原因影响下效率会变得非常低。

注意到本题的模数非常小(不知道是不是出题人的善意),于是可以把$f[i][j]$开成short int省去一半空间。

再注意到其实同时开$f[i][j]$与$g[i][j]$是没有必要的,我们完全可以把$f[i][j]$表示成$g[i][j]$的前缀和形式,从而又省去一半空间。

 #include<bits/stdc++.h>
const int maxn = ;
const int maxm = ;
const int MO = ; int n,m,mxBound,mnBound,ans;
int a[maxn],s[maxn],t[maxn];
short int g[maxn][maxm]; int read()
{
char ch = getchar();
int num = ;
bool fl = ;
for (; !isdigit(ch); ch = getchar())
if (ch=='-') fl = ;
for (; isdigit(ch); ch = getchar())
num = (num<<)+(num<<)+ch-;
if (fl) num = -num;
return num;
}
bool check(int x)
{
int cnt = , sum = ;
for (int i=; i<=n; i++)
if (sum+a[i] > x) sum = a[i], cnt++;
else sum += a[i];
return cnt <= m;
}
int main()
{
// freopen("1044.in","r",stdin);
// freopen("1044.out","w",stdout);
n = read(), m = read()+;
for (int i=; i<=n; i++)
a[i] = read(), mxBound += a[i], mnBound = mnBound < a[i]?a[i]:mnBound, s[i] = s[i-]+a[i];
int l = mnBound, r = mxBound, head = , tot = ;
for (int mid=(l+r)>>; l<=r; mid=(l+r)>>)
if (check(mid)) ans = mid, r = mid-;
else l = mid+;
printf("%d ",ans);
for (int i=; i<=n; i++)
{
tot += a[i];
while (tot > ans) tot -= a[head++];
t[i] = head;
}
register int i,j;
ans = ;
for (i=; i<=n; i++) g[i][] = ;
for (int i=; i<=n; i++)
{
for (int j=; j<=m; j++)
{
int delta = g[i-][j-];
if (t[i]>) delta -= g[t[i]-][j-];
(g[i][j] = g[i-][j]+delta) %= MO;
}
}
for (i=; i<=m; i++)
ans = (ans+g[n][i]-g[n-][i]+MO)%MO;
printf("%d\n",ans);
return ;
}

END

【动态规划】bzoj1044: [HAOI2008]木棍分割的更多相关文章

  1. BZOJ1044: [HAOI2008]木棍分割

    1044: [HAOI2008]木棍分割 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1580  Solved: 567[Submit][Statu ...

  2. bzoj1044[HAOI2008]木棍分割 单调队列优化dp

    1044: [HAOI2008]木棍分割 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4314  Solved: 1664[Submit][Stat ...

  3. BZOJ1044 [HAOI2008]木棍分割 【二分+Dp】

    1044: [HAOI2008]木棍分割 Time Limit: 10 Sec  Memory Limit: 162 MB Submit: 4281  Solved: 1644 [Submit][St ...

  4. [BZOJ1044][HAOI2008]木棍分割 二分+贪心+dp+前缀和优化

    1044: [HAOI2008]木棍分割 Time Limit: 10 Sec  Memory Limit: 162 MB Submit: 4112  Solved: 1577 [Submit][St ...

  5. 【czy系列赛】czy的后宫6 && bzoj1044 [HAOI2008]木棍分割

    题目描述 众所周知的是丧尸czy有很多妹子(虽然很多但是质量不容乐观QAQ),今天czy把n个妹子排成一行来检阅.但是czy的妹子的质量实在--所以czy看不下去了.检阅了第i个妹子会增加czy a[ ...

  6. [bzoj1044][HAOI2008][木棍分割] (二分+贪心+dp+队列优化)

    Description 有n根木棍, 第i根木棍的长度为Li,n根木棍依次连结了一起, 总共有n-1个连接处. 现在允许你最多砍断m个连接处, 砍完后n根木棍被分成了很多段,要求满足总长度最大的一段长 ...

  7. [BZOJ1044][HAOI2008]木棍分割 二分 + 单调队列优化dp + 滚动数组优化dp

    Description 有n根木棍, 第i根木棍的长度为Li,n根木棍依次连结了一起, 总共有n-1个连接处. 现在允许你最多砍断m个连接处, 砍完后n根木棍被分成了很多段,要求满足总长度最大的一段长 ...

  8. bzoj1044: [HAOI2008]木棍分割 二分+dp

    有n根木棍, 第i根木棍的长度为Li,n根木棍依次连结了一起, 总共有n-1个连接处. 现在允许你最多砍断m个连接处, 砍完后n根木棍被分成了很多段,要求满足总长度最大的一段长度最小, 并且输出有多少 ...

  9. BZOJ1044: [HAOI2008]木棍分割(dp 单调队列)

    题意 题目链接 Sol 比较套路的一个题. 第一问二分答案check一下 第二问设\(f[i][j]\)表示前\(i\)个数,切了\(j\)段的方案数,单调队列优化一下. 转移的时候只需要保证当前段的 ...

随机推荐

  1. STC单片机掉电断电失电瞬间EEPROM数据保存处理办法(转)

    由于客户在请人设计开发一设备,但是设备用户处总停电,造成设备及其周边耗材损耗严重,因此请我司在现有STC为主要芯片的基础上做掉电瞬间EEPROM里的20个参数保存,上电后通过读取EEPROM中的参数回 ...

  2. 单片机的C语言中位操作用法2

    单片机的C语言中位操作用法 在对单处机进行编程的过程中,对位的操作是经常遇到的.C51对位的操控能力是非常强大 的.从这一点上,就可以看出C不光具有高级语言的灵活性,又有低级语言贴近硬件的特点. 这也 ...

  3. 掌握MySQL数据库这些优化技巧,事半功倍!

    一个成熟的数据库架构并不是一开始设计就具备高可用.高伸缩等特性的,它是随着用户量的增加,基础架构才逐渐完善.这篇文章主要谈谈MySQL数据库在发展周期中所面临的问题及优化方案,暂且抛开前端应用不说,大 ...

  4. PAT甲级——1130 Infix Expression (25 分)

    1130 Infix Expression (25 分)(找规律.中序遍历) 我是先在CSDN上面发表的这篇文章https://blog.csdn.net/weixin_44385565/articl ...

  5. python 基础(十) 面向对象

    面向对象 一.概念 类(class): 用来描述具有相同属性和方法的对象的集合 对象是类的实例化 类变量:类变量在整个实例化的对象中是共用的.定义在类中 并且是函数体外的 实例变量:只能作用于 当前类 ...

  6. PlSqlDev中执行INSERT SQL语句包含&符号导致数据异常

    在PLSQL Developer中执行Insert语句时提示如下信息: 当时未注意,直接点击OK按钮继续. 导入数据后查看发现部分数据中的参数丢失了一部分,呈以下规律: . 而正常应为: . 经询问大 ...

  7. JAVA常用知识总结(十一)——数据库(一)

    项目中用到的不常见sql语法 1:空值不在前的排序 select a.* from WZX_SCZY A order by SCZY_START_TIME desc nulls last (不加nul ...

  8. 移动端 mui框架中input输入框或任何输入框聚焦后页面自动上移

    一.mui框架中点击input后,安卓手机弹出自带的输入键盘时,页面自动上移 实现方法: (1)只要把input标签放在mui-content这个类里面就可以了 <div class=" ...

  9. Ionic之$scope 依赖注入报错

    在开发Ionic过程中,发现会报在 LoginController 中引用locals报错,具体报错问题: ionic.bundle.js:19526 Error: [$injector:unpr] ...

  10. SQL Server插入中文数据出现乱码问题

    我在用sql server存储数据的时候发现中文全变成了问号,我知道中文是特殊的编码.所以在数据库设计的时候包含中文的字段就是nvarchar,但是还是成了问号 好了,不多说了,解决方案如下: 在存储 ...