https://www.cs.utah.edu/~jeffp/teaching/cs5955/L3-Chern-Hoeff.pdf

【大数据-通过随机过程降维 】

When dealing with modern big data sets, a very common theme is reducing the set through a random process. These generally work by making “many simple estimates” of the full data set, and then judging them as a whole. Perhaps magically, these “many simple estimates” can provide a very accurate and small representation of the large data set. The key tool in showing how many of these simple estimates are needed for a fixed accuracy trade-off is the Chernoff-Hoeffding inequality [2, 6]. This document provides a simple form of this bound, and two examples of its use.

【对全集多次简单评估,对不同次结果进行聚合二得出对全集的评估】

[2] Herman Chernoff. A measure of asymptotic efficiency for tests of hypothesis based on the sum of observations. Annals of Mathematical Statistics, 23:493–509, 1952. [3] Sanjoy Dasgupta and Anupam Gupta. An elmentary proof of a theorem of johnson and lindenstrauss. Random Structures & Algorithms, 22:60–65, 2003. [4] Devdatt P. Dubhashi and Alessandro Panconesi. Concentration of Measure for the Analysis of Randomized Algorithms. Cambridge, 2009. [5] P. Frankl and H. Maehara. The Johnson-Lindenstrauss lemma and the spericity of some graphs. Journal of Combinatorial Theory, Series A, (355–362), 1987. [6] Wassily Hoeffding. Probability inequalities for the sum of bounded random variables. Journal of the American Statisitcal Association, 58:13–30, 1963.

http://math.mit.edu/~goemans/18310S15/chernoff-notes.pdf

Can Markov’s and Chebyshev’s Inequality be improved for this particular kind of random variable?

Chernoff-Hoeffding inequality -- Chernoff bounds, and some applications的更多相关文章

  1. Hoeffding inequality

    Hoeffding公式为 \epsilon]\leq{2e^{-2\epsilon^2N}}"> 如果把Training error和Test error分别看成和的话,Hoeffdi ...

  2. 机器学习(4)Hoeffding Inequality--界定概率边界

    问题 假设空间的样本复杂度(sample complexity):随着问题规模的增长导致所需训练样本的增长称为sample complexity. 实际情况中,最有可能限制学习器成功的因素是训练数据的 ...

  3. Andrew Ng机器学习公开课笔记 -- 学习理论

    网易公开课,第9,10课 notes,http://cs229.stanford.edu/notes/cs229-notes4.pdf 这章要讨论的问题是,如何去评价和选择学习算法   Bias/va ...

  4. Basic Mathematics You Should Mastered

    Basic Mathematics You Should Mastered 2017-08-17  21:22:40  1. Statistical distance  In statistics,  ...

  5. Machine Learning——吴恩达机器学习笔记(酷

    [1] ML Introduction a. supervised learning & unsupervised learning 监督学习:从给定的训练数据集中学习出一个函数(模型参数), ...

  6. 【集成模型】Bootstrap Aggregating(Bagging)

    0 - 思想 如下图所示,Bagging(Bootstrap Aggregating)的基本思想是,从训练数据集中有返回的抽象m次形成m个子数据集(bootstrapping),对于每一个子数据集训练 ...

  7. Stanford CS229 Machine Learning by Andrew Ng

    CS229 Machine Learning Stanford Course by Andrew Ng Course material, problem set Matlab code written ...

  8. Computer Science Theory for the Information Age-2: 高维空间中的正方体和Chernoff Bounds

    高维空间中的正方体和Chernoff Bounds 本文将介绍高维空间中正方体的一些性质,以及一个非常常见也是非常有用的概率不等式——Chernoff Bounds. 考虑$d$维单位正方体$C=\{ ...

  9. 切诺夫界证明(Chernoff bound)

随机推荐

  1. Ceres Solver: 高效的非线性优化库(一)

    Ceres Solver: 高效的非线性优化库(一) 注:本文基于Ceres官方文档,大部分由英文翻译而来.可作为非官方参考文档. 简介 Ceres,原意是谷神星,是发现不久的一颗轨道在木星和火星之间 ...

  2. [置顶] zabbix告警信息-lykchat信息发送系统

    lykchat信息发送系统 lykchat信息发送系统是Python3开发的,通过模拟微信网页端,基于个人微信号,为系统管理人员提供信息发送工具. 实现的功能有用户登录管理.微信登陆管理和微信信息发送 ...

  3. VS2010 MFC中制作Visual Studio风格的停靠侧栏窗口(CDockablePane里嵌套FormView表单视图)

    VS2010 MFC中制作Visual Studio风格的停靠侧栏窗口(CDockablePane里嵌套FormView表单视图) 1. 在资源窗口里新建一个FormView的Dialog,修改ID为 ...

  4. SVN源码服务器搭建-详细教程

    一.引言 笔者曾经试图在网上搜索一篇关于SVN源代码服务器搭建方面的中文技术文章,可惜,所找到的,要么是不完整,要么就是对笔者没什么帮助的文章,TortoiseSvn的帮助文档固然强大,但因为是英文, ...

  5. 转:Java 自动装箱与拆箱(Autoboxing and unboxing)

    转: http://www.cnblogs.com/danne823/archive/2011/04/22/2025332.html 什么是自动装箱拆箱 基本数据类型的自动装箱(autoboxing) ...

  6. AutoCAD2004启动时出现fail to get CommcntrController的怎么办

    解决AutoCAD2004启动时出现fail to get CommcntrController的问题! 2009-02-01 18:06 以前安装AutoCAD2004的时候可以用正常使用,后来又装 ...

  7. es6 - foreach

    foreach ... // es5 - foreach arr.forEach(function(value, index, arr) { console.log(value, index, arr ...

  8. Python Flask 在Sina App Engine (SAE)上安家

    早就听说了Python的大名,随着的编程语言的理解加深,越发认为动态语言的威力--真大呀. 趁这段时间不忙,我也用Python写了一个应用,而且将其部署到Sina App Engine (SAE).S ...

  9. FZU2125:简单的等式

    Problem Description 如今有一个等式例如以下:x^2+s(x,m)x-n=0. 当中s(x,m)表示把x写成m进制时,每一个位数相加的和.如今,在给定n,m的情况下,求出满足等式的最 ...

  10. c# emit 实现类的代理

    using System; using System.Linq; using System.Reflection; using System.Reflection.Emit; namespace Em ...