Chernoff-Hoeffding inequality -- Chernoff bounds, and some applications
https://www.cs.utah.edu/~jeffp/teaching/cs5955/L3-Chern-Hoeff.pdf
【大数据-通过随机过程降维 】
When dealing with modern big data sets, a very common theme is reducing the set through a random process. These generally work by making “many simple estimates” of the full data set, and then judging them as a whole. Perhaps magically, these “many simple estimates” can provide a very accurate and small representation of the large data set. The key tool in showing how many of these simple estimates are needed for a fixed accuracy trade-off is the Chernoff-Hoeffding inequality [2, 6]. This document provides a simple form of this bound, and two examples of its use.
【对全集多次简单评估,对不同次结果进行聚合二得出对全集的评估】
[2] Herman Chernoff. A measure of asymptotic efficiency for tests of hypothesis based on the sum of observations. Annals of Mathematical Statistics, 23:493–509, 1952. [3] Sanjoy Dasgupta and Anupam Gupta. An elmentary proof of a theorem of johnson and lindenstrauss. Random Structures & Algorithms, 22:60–65, 2003. [4] Devdatt P. Dubhashi and Alessandro Panconesi. Concentration of Measure for the Analysis of Randomized Algorithms. Cambridge, 2009. [5] P. Frankl and H. Maehara. The Johnson-Lindenstrauss lemma and the spericity of some graphs. Journal of Combinatorial Theory, Series A, (355–362), 1987. [6] Wassily Hoeffding. Probability inequalities for the sum of bounded random variables. Journal of the American Statisitcal Association, 58:13–30, 1963.
http://math.mit.edu/~goemans/18310S15/chernoff-notes.pdf
Can Markov’s and Chebyshev’s Inequality be improved for this particular kind of random variable?
Chernoff-Hoeffding inequality -- Chernoff bounds, and some applications的更多相关文章
- Hoeffding inequality
Hoeffding公式为 \epsilon]\leq{2e^{-2\epsilon^2N}}"> 如果把Training error和Test error分别看成和的话,Hoeffdi ...
- 机器学习(4)Hoeffding Inequality--界定概率边界
问题 假设空间的样本复杂度(sample complexity):随着问题规模的增长导致所需训练样本的增长称为sample complexity. 实际情况中,最有可能限制学习器成功的因素是训练数据的 ...
- Andrew Ng机器学习公开课笔记 -- 学习理论
网易公开课,第9,10课 notes,http://cs229.stanford.edu/notes/cs229-notes4.pdf 这章要讨论的问题是,如何去评价和选择学习算法 Bias/va ...
- Basic Mathematics You Should Mastered
Basic Mathematics You Should Mastered 2017-08-17 21:22:40 1. Statistical distance In statistics, ...
- Machine Learning——吴恩达机器学习笔记(酷
[1] ML Introduction a. supervised learning & unsupervised learning 监督学习:从给定的训练数据集中学习出一个函数(模型参数), ...
- 【集成模型】Bootstrap Aggregating(Bagging)
0 - 思想 如下图所示,Bagging(Bootstrap Aggregating)的基本思想是,从训练数据集中有返回的抽象m次形成m个子数据集(bootstrapping),对于每一个子数据集训练 ...
- Stanford CS229 Machine Learning by Andrew Ng
CS229 Machine Learning Stanford Course by Andrew Ng Course material, problem set Matlab code written ...
- Computer Science Theory for the Information Age-2: 高维空间中的正方体和Chernoff Bounds
高维空间中的正方体和Chernoff Bounds 本文将介绍高维空间中正方体的一些性质,以及一个非常常见也是非常有用的概率不等式——Chernoff Bounds. 考虑$d$维单位正方体$C=\{ ...
- 切诺夫界证明(Chernoff bound)
随机推荐
- python调用phantomjs组件(windows和linux)
phantomjs在windows和linux系统,可以通selenium的webdriver直接调用,所以只要将phantomjs程序加载到python程序目录下. 示例代码如下所示: #建立Pha ...
- 洛谷——P1098 字符串的展开
P1098 字符串的展开 题目描述 在初赛普及组的“阅读程序写结果”的问题中,我们曾给出一个字符串展开的例子:如果在输入的字符串中,含有类似于“d-h”或者“4-8”的字串,我们就把它当作一种简写,输 ...
- Spring MVC通过Pageable对象和PageableDefault注解获取分页信息(MongoDB通过Pageable来操作分页)
说明:Pageable同时也能用于操作MongoDB的分页. PageableSpring Data库中定义的一个接口,该接口是所有分页相关信息的一个抽象,通过该接口,我们可以得到和分页相关所有信息( ...
- Storyboards Tutorial 03
这一节主要介绍segues,static table view cells 和 Add Player screen 以及 a game picker screen. Introducing Segue ...
- Speech to Text for iOS
找了一下 speech to text 可以用的 SDK for iOS 以下幾種方案: NDEV Mobile (有免費方案,不過似乎不支援離線,客戶清單中有 wallmart,支援不少語言) iS ...
- 对象第复制operator=
类机制中有默认的对象复制操作符=,自定义对象复制需要注意一个问题,如果有遇到指针指向的资源是需要释放的,这时需要毫不留情释放,否则内存空间的泄露就不可避免.复制操作与拷贝构造函数的参数是一致的,只是在 ...
- IT行业是吃青春饭的吗?
作者:杨中科 1.“it专业的学生太多了,而且就业压力很大”是吗? 现在各个大学为了赚钱拼命扩招,所以不仅IT专业的学生人比较多,而且其他专业的学生人数也比较多,“僧多粥少”就通常意味着就业压 ...
- 想提升java知识的同学请进
这是我最近在整理的笔记,大家可以看看. https://www.gitbook.com/book/jackal007/java_more/ 如果觉得有问题可以提出,随时修改. 这个笔记是我花了好多时间 ...
- 【工具类】Date、Long、String 类型互转
开发常常遇到Date.Long.String 三种类型数据须要互转的问题.以此记录. public static void main(String[] args) throws ParseExcept ...
- UNP学习笔记(第一章 简介)
环境搭建 1.下载解压unpv13e.tar.gz 2.进入目录执行 ./configurecd lib //进入lib目录make //执行make命令 3.将生成的libunp.a静态库复制到/u ...