Chernoff-Hoeffding inequality -- Chernoff bounds, and some applications
https://www.cs.utah.edu/~jeffp/teaching/cs5955/L3-Chern-Hoeff.pdf
【大数据-通过随机过程降维 】
When dealing with modern big data sets, a very common theme is reducing the set through a random process. These generally work by making “many simple estimates” of the full data set, and then judging them as a whole. Perhaps magically, these “many simple estimates” can provide a very accurate and small representation of the large data set. The key tool in showing how many of these simple estimates are needed for a fixed accuracy trade-off is the Chernoff-Hoeffding inequality [2, 6]. This document provides a simple form of this bound, and two examples of its use.
【对全集多次简单评估,对不同次结果进行聚合二得出对全集的评估】
[2] Herman Chernoff. A measure of asymptotic efficiency for tests of hypothesis based on the sum of observations. Annals of Mathematical Statistics, 23:493–509, 1952. [3] Sanjoy Dasgupta and Anupam Gupta. An elmentary proof of a theorem of johnson and lindenstrauss. Random Structures & Algorithms, 22:60–65, 2003. [4] Devdatt P. Dubhashi and Alessandro Panconesi. Concentration of Measure for the Analysis of Randomized Algorithms. Cambridge, 2009. [5] P. Frankl and H. Maehara. The Johnson-Lindenstrauss lemma and the spericity of some graphs. Journal of Combinatorial Theory, Series A, (355–362), 1987. [6] Wassily Hoeffding. Probability inequalities for the sum of bounded random variables. Journal of the American Statisitcal Association, 58:13–30, 1963.
http://math.mit.edu/~goemans/18310S15/chernoff-notes.pdf
Can Markov’s and Chebyshev’s Inequality be improved for this particular kind of random variable?
Chernoff-Hoeffding inequality -- Chernoff bounds, and some applications的更多相关文章
- Hoeffding inequality
Hoeffding公式为 \epsilon]\leq{2e^{-2\epsilon^2N}}"> 如果把Training error和Test error分别看成和的话,Hoeffdi ...
- 机器学习(4)Hoeffding Inequality--界定概率边界
问题 假设空间的样本复杂度(sample complexity):随着问题规模的增长导致所需训练样本的增长称为sample complexity. 实际情况中,最有可能限制学习器成功的因素是训练数据的 ...
- Andrew Ng机器学习公开课笔记 -- 学习理论
网易公开课,第9,10课 notes,http://cs229.stanford.edu/notes/cs229-notes4.pdf 这章要讨论的问题是,如何去评价和选择学习算法 Bias/va ...
- Basic Mathematics You Should Mastered
Basic Mathematics You Should Mastered 2017-08-17 21:22:40 1. Statistical distance In statistics, ...
- Machine Learning——吴恩达机器学习笔记(酷
[1] ML Introduction a. supervised learning & unsupervised learning 监督学习:从给定的训练数据集中学习出一个函数(模型参数), ...
- 【集成模型】Bootstrap Aggregating(Bagging)
0 - 思想 如下图所示,Bagging(Bootstrap Aggregating)的基本思想是,从训练数据集中有返回的抽象m次形成m个子数据集(bootstrapping),对于每一个子数据集训练 ...
- Stanford CS229 Machine Learning by Andrew Ng
CS229 Machine Learning Stanford Course by Andrew Ng Course material, problem set Matlab code written ...
- Computer Science Theory for the Information Age-2: 高维空间中的正方体和Chernoff Bounds
高维空间中的正方体和Chernoff Bounds 本文将介绍高维空间中正方体的一些性质,以及一个非常常见也是非常有用的概率不等式——Chernoff Bounds. 考虑$d$维单位正方体$C=\{ ...
- 切诺夫界证明(Chernoff bound)
随机推荐
- Ceres Solver: 高效的非线性优化库(一)
Ceres Solver: 高效的非线性优化库(一) 注:本文基于Ceres官方文档,大部分由英文翻译而来.可作为非官方参考文档. 简介 Ceres,原意是谷神星,是发现不久的一颗轨道在木星和火星之间 ...
- [置顶]
zabbix告警信息-lykchat信息发送系统
lykchat信息发送系统 lykchat信息发送系统是Python3开发的,通过模拟微信网页端,基于个人微信号,为系统管理人员提供信息发送工具. 实现的功能有用户登录管理.微信登陆管理和微信信息发送 ...
- VS2010 MFC中制作Visual Studio风格的停靠侧栏窗口(CDockablePane里嵌套FormView表单视图)
VS2010 MFC中制作Visual Studio风格的停靠侧栏窗口(CDockablePane里嵌套FormView表单视图) 1. 在资源窗口里新建一个FormView的Dialog,修改ID为 ...
- SVN源码服务器搭建-详细教程
一.引言 笔者曾经试图在网上搜索一篇关于SVN源代码服务器搭建方面的中文技术文章,可惜,所找到的,要么是不完整,要么就是对笔者没什么帮助的文章,TortoiseSvn的帮助文档固然强大,但因为是英文, ...
- 转:Java 自动装箱与拆箱(Autoboxing and unboxing)
转: http://www.cnblogs.com/danne823/archive/2011/04/22/2025332.html 什么是自动装箱拆箱 基本数据类型的自动装箱(autoboxing) ...
- AutoCAD2004启动时出现fail to get CommcntrController的怎么办
解决AutoCAD2004启动时出现fail to get CommcntrController的问题! 2009-02-01 18:06 以前安装AutoCAD2004的时候可以用正常使用,后来又装 ...
- es6 - foreach
foreach ... // es5 - foreach arr.forEach(function(value, index, arr) { console.log(value, index, arr ...
- Python Flask 在Sina App Engine (SAE)上安家
早就听说了Python的大名,随着的编程语言的理解加深,越发认为动态语言的威力--真大呀. 趁这段时间不忙,我也用Python写了一个应用,而且将其部署到Sina App Engine (SAE).S ...
- FZU2125:简单的等式
Problem Description 如今有一个等式例如以下:x^2+s(x,m)x-n=0. 当中s(x,m)表示把x写成m进制时,每一个位数相加的和.如今,在给定n,m的情况下,求出满足等式的最 ...
- c# emit 实现类的代理
using System; using System.Linq; using System.Reflection; using System.Reflection.Emit; namespace Em ...