https://www.cs.utah.edu/~jeffp/teaching/cs5955/L3-Chern-Hoeff.pdf

【大数据-通过随机过程降维 】

When dealing with modern big data sets, a very common theme is reducing the set through a random process. These generally work by making “many simple estimates” of the full data set, and then judging them as a whole. Perhaps magically, these “many simple estimates” can provide a very accurate and small representation of the large data set. The key tool in showing how many of these simple estimates are needed for a fixed accuracy trade-off is the Chernoff-Hoeffding inequality [2, 6]. This document provides a simple form of this bound, and two examples of its use.

【对全集多次简单评估,对不同次结果进行聚合二得出对全集的评估】

[2] Herman Chernoff. A measure of asymptotic efficiency for tests of hypothesis based on the sum of observations. Annals of Mathematical Statistics, 23:493–509, 1952. [3] Sanjoy Dasgupta and Anupam Gupta. An elmentary proof of a theorem of johnson and lindenstrauss. Random Structures & Algorithms, 22:60–65, 2003. [4] Devdatt P. Dubhashi and Alessandro Panconesi. Concentration of Measure for the Analysis of Randomized Algorithms. Cambridge, 2009. [5] P. Frankl and H. Maehara. The Johnson-Lindenstrauss lemma and the spericity of some graphs. Journal of Combinatorial Theory, Series A, (355–362), 1987. [6] Wassily Hoeffding. Probability inequalities for the sum of bounded random variables. Journal of the American Statisitcal Association, 58:13–30, 1963.

http://math.mit.edu/~goemans/18310S15/chernoff-notes.pdf

Can Markov’s and Chebyshev’s Inequality be improved for this particular kind of random variable?

Chernoff-Hoeffding inequality -- Chernoff bounds, and some applications的更多相关文章

  1. Hoeffding inequality

    Hoeffding公式为 \epsilon]\leq{2e^{-2\epsilon^2N}}"> 如果把Training error和Test error分别看成和的话,Hoeffdi ...

  2. 机器学习(4)Hoeffding Inequality--界定概率边界

    问题 假设空间的样本复杂度(sample complexity):随着问题规模的增长导致所需训练样本的增长称为sample complexity. 实际情况中,最有可能限制学习器成功的因素是训练数据的 ...

  3. Andrew Ng机器学习公开课笔记 -- 学习理论

    网易公开课,第9,10课 notes,http://cs229.stanford.edu/notes/cs229-notes4.pdf 这章要讨论的问题是,如何去评价和选择学习算法   Bias/va ...

  4. Basic Mathematics You Should Mastered

    Basic Mathematics You Should Mastered 2017-08-17  21:22:40  1. Statistical distance  In statistics,  ...

  5. Machine Learning——吴恩达机器学习笔记(酷

    [1] ML Introduction a. supervised learning & unsupervised learning 监督学习:从给定的训练数据集中学习出一个函数(模型参数), ...

  6. 【集成模型】Bootstrap Aggregating(Bagging)

    0 - 思想 如下图所示,Bagging(Bootstrap Aggregating)的基本思想是,从训练数据集中有返回的抽象m次形成m个子数据集(bootstrapping),对于每一个子数据集训练 ...

  7. Stanford CS229 Machine Learning by Andrew Ng

    CS229 Machine Learning Stanford Course by Andrew Ng Course material, problem set Matlab code written ...

  8. Computer Science Theory for the Information Age-2: 高维空间中的正方体和Chernoff Bounds

    高维空间中的正方体和Chernoff Bounds 本文将介绍高维空间中正方体的一些性质,以及一个非常常见也是非常有用的概率不等式——Chernoff Bounds. 考虑$d$维单位正方体$C=\{ ...

  9. 切诺夫界证明(Chernoff bound)

随机推荐

  1. Write a function that generates one of 3 numbers according to given probabilities

    You are given a function rand(a, b) which generates equiprobable random numbers between [a, b] inclu ...

  2. java JIT AOT

    作者:ETIN链接:https://zhuanlan.zhihu.com/p/27393316来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. I guess anyon ...

  3. 【spring】spring的事务传播性 hibernate/jpa等的事务隔离性

    spring的注解 @Trancational加在controller层,调用了service层的方法,service层的方法也加了@Trancational注解,这时候就出现了事务的嵌套,也就出现了 ...

  4. Android 获取虚拟按键的高度

    //获取虚拟按键的高度 public static int getNavigationBarHeight(Context context) { int result = 0; if (hasNavBa ...

  5. 危急,不要任意让站点记住password自己主动登陆!

    为了方便用户登录,差点儿全部的站点都实现了"记住password"."自己主动登陆"这样似乎人性化的功能. 我也非常喜欢这个功能,由于我自己的脑子实在是讨厌记东 ...

  6. Linux执行命令unable to create new native thread问题

    对于系统的Linux的问题 主要是线程数有限制max user processes 参数限制 修改这个参数涉及到修改两个文件 vi /etc/security/limits.conf 增加如下内容: ...

  7. 转: scala语言的简单入门 (IBM develop)

    转: https://www.ibm.com/developerworks/cn/java/j-lo-funinscala2/

  8. 一个端口划到多个VLAN

    不想启路由的情况下,希望将一个端口划到多个VLAN中去,其目的有如下几点: 1.隔离不想让相互访问的端口.(如两个部门) 2.让都需要访问的端口划到所有VLAN.(如共享服务器) 3.不启路由协议.( ...

  9. PHP树生成迷宫及A*自己主动寻路算法

    PHP树生成迷宫及A*自己主动寻路算法 迷宫算法是採用树的深度遍历原理.这样生成的迷宫相当的细,并且死胡同数量相对较少! 随意两点之间都存在唯一的一条通路. 至于A*寻路算法是最大众化的一全自己主动寻 ...

  10. vue2.X 组件通信($emit $on props)

    1.index.html  子组件直接修改父组件的数据 组件通讯: vm.$emit(); vm.$on(); 父组件和子组件: 子组件想要拿到父组件数据: 通过 props 之前,子组件可以更改父组 ...