https://www.cs.utah.edu/~jeffp/teaching/cs5955/L3-Chern-Hoeff.pdf

【大数据-通过随机过程降维 】

When dealing with modern big data sets, a very common theme is reducing the set through a random process. These generally work by making “many simple estimates” of the full data set, and then judging them as a whole. Perhaps magically, these “many simple estimates” can provide a very accurate and small representation of the large data set. The key tool in showing how many of these simple estimates are needed for a fixed accuracy trade-off is the Chernoff-Hoeffding inequality [2, 6]. This document provides a simple form of this bound, and two examples of its use.

【对全集多次简单评估,对不同次结果进行聚合二得出对全集的评估】

[2] Herman Chernoff. A measure of asymptotic efficiency for tests of hypothesis based on the sum of observations. Annals of Mathematical Statistics, 23:493–509, 1952. [3] Sanjoy Dasgupta and Anupam Gupta. An elmentary proof of a theorem of johnson and lindenstrauss. Random Structures & Algorithms, 22:60–65, 2003. [4] Devdatt P. Dubhashi and Alessandro Panconesi. Concentration of Measure for the Analysis of Randomized Algorithms. Cambridge, 2009. [5] P. Frankl and H. Maehara. The Johnson-Lindenstrauss lemma and the spericity of some graphs. Journal of Combinatorial Theory, Series A, (355–362), 1987. [6] Wassily Hoeffding. Probability inequalities for the sum of bounded random variables. Journal of the American Statisitcal Association, 58:13–30, 1963.

http://math.mit.edu/~goemans/18310S15/chernoff-notes.pdf

Can Markov’s and Chebyshev’s Inequality be improved for this particular kind of random variable?

Chernoff-Hoeffding inequality -- Chernoff bounds, and some applications的更多相关文章

  1. Hoeffding inequality

    Hoeffding公式为 \epsilon]\leq{2e^{-2\epsilon^2N}}"> 如果把Training error和Test error分别看成和的话,Hoeffdi ...

  2. 机器学习(4)Hoeffding Inequality--界定概率边界

    问题 假设空间的样本复杂度(sample complexity):随着问题规模的增长导致所需训练样本的增长称为sample complexity. 实际情况中,最有可能限制学习器成功的因素是训练数据的 ...

  3. Andrew Ng机器学习公开课笔记 -- 学习理论

    网易公开课,第9,10课 notes,http://cs229.stanford.edu/notes/cs229-notes4.pdf 这章要讨论的问题是,如何去评价和选择学习算法   Bias/va ...

  4. Basic Mathematics You Should Mastered

    Basic Mathematics You Should Mastered 2017-08-17  21:22:40  1. Statistical distance  In statistics,  ...

  5. Machine Learning——吴恩达机器学习笔记(酷

    [1] ML Introduction a. supervised learning & unsupervised learning 监督学习:从给定的训练数据集中学习出一个函数(模型参数), ...

  6. 【集成模型】Bootstrap Aggregating(Bagging)

    0 - 思想 如下图所示,Bagging(Bootstrap Aggregating)的基本思想是,从训练数据集中有返回的抽象m次形成m个子数据集(bootstrapping),对于每一个子数据集训练 ...

  7. Stanford CS229 Machine Learning by Andrew Ng

    CS229 Machine Learning Stanford Course by Andrew Ng Course material, problem set Matlab code written ...

  8. Computer Science Theory for the Information Age-2: 高维空间中的正方体和Chernoff Bounds

    高维空间中的正方体和Chernoff Bounds 本文将介绍高维空间中正方体的一些性质,以及一个非常常见也是非常有用的概率不等式——Chernoff Bounds. 考虑$d$维单位正方体$C=\{ ...

  9. 切诺夫界证明(Chernoff bound)

随机推荐

  1. 维生素d

    作者:卓正内科李爽 链接:https://www.guokr.com/article/440438/来源:果壳本文版权属于果壳网(guokr.com),禁止转载.如有需要,请联系sns@guokr.c ...

  2. luogu P2434 [SDOI2005]区间

    题目描述 现给定n个闭区间[ai, bi],1<=i<=n.这些区间的并可以表示为一些不相交的闭区间的并.你的任务就是在这些表示方式中找出包含最少区间的方案.你的输出应该按照区间的升序排列 ...

  3. the Red Sun

    题面 Description 给定一张 N 个点的图, 点的标号为 1 到 n . 我们进行 M 次连边, 每次连边可以描述为 a b c d w : for i = a to b do for j ...

  4. IOS7开发~NSAttributedString

    从 NSBundle 中读取rtf文本文件的内容,然后用UITextView展示: NSURL *url = [[NSBundle mainBundle] URLForResource:@" ...

  5. PowerDesigner16 安装包及破解文件

    一.准备工作 PowerDesigner16 安装包:http://pan.baidu.com/s/11Qv9H 或http://cloud.suning.com/cloud-web/share/li ...

  6. Windows下批处理命令启动项目bat脚本

    文件env.cfg #server name SERVER_NAME=ActivitiService #JDK Home JDK_HOME= #Main MAIN_CLASS=com.nbtv.com ...

  7. java wait(),notify(),notifyAll()的理解

    这个三个函数来自Object类,众所周知它们是用于多线程同步的.然而,有个问题却一直没搞清楚,即notify()函数到底通知谁?<Thinking in JAVA>中有这么一句话,当not ...

  8. java命令行

    Launches a Java application. Synopsis java [options] classname [args] java [options] -jar filename [ ...

  9. C语言八进制和十六进制数

    一 赋值 int dex = 100;// 默认十进制 int oct = 0144;// 八进制,以0開始 int hex = 0x64;// 十六进制,以0x開始 二 输出 void show(i ...

  10. 在VS2010中如何添加MSCOMM控件,实现串口通讯

      参考文章:http://wenku.baidu.com/link?url=MLGQojaxyHnEgngEAXG8oPnISuM9SVaDzNTvg0oTSrrJkMXIR_6MR3cO_Vnh- ...