Chernoff-Hoeffding inequality -- Chernoff bounds, and some applications
https://www.cs.utah.edu/~jeffp/teaching/cs5955/L3-Chern-Hoeff.pdf
【大数据-通过随机过程降维 】
When dealing with modern big data sets, a very common theme is reducing the set through a random process. These generally work by making “many simple estimates” of the full data set, and then judging them as a whole. Perhaps magically, these “many simple estimates” can provide a very accurate and small representation of the large data set. The key tool in showing how many of these simple estimates are needed for a fixed accuracy trade-off is the Chernoff-Hoeffding inequality [2, 6]. This document provides a simple form of this bound, and two examples of its use.
【对全集多次简单评估,对不同次结果进行聚合二得出对全集的评估】
[2] Herman Chernoff. A measure of asymptotic efficiency for tests of hypothesis based on the sum of observations. Annals of Mathematical Statistics, 23:493–509, 1952. [3] Sanjoy Dasgupta and Anupam Gupta. An elmentary proof of a theorem of johnson and lindenstrauss. Random Structures & Algorithms, 22:60–65, 2003. [4] Devdatt P. Dubhashi and Alessandro Panconesi. Concentration of Measure for the Analysis of Randomized Algorithms. Cambridge, 2009. [5] P. Frankl and H. Maehara. The Johnson-Lindenstrauss lemma and the spericity of some graphs. Journal of Combinatorial Theory, Series A, (355–362), 1987. [6] Wassily Hoeffding. Probability inequalities for the sum of bounded random variables. Journal of the American Statisitcal Association, 58:13–30, 1963.
http://math.mit.edu/~goemans/18310S15/chernoff-notes.pdf
Can Markov’s and Chebyshev’s Inequality be improved for this particular kind of random variable?
Chernoff-Hoeffding inequality -- Chernoff bounds, and some applications的更多相关文章
- Hoeffding inequality
Hoeffding公式为 \epsilon]\leq{2e^{-2\epsilon^2N}}"> 如果把Training error和Test error分别看成和的话,Hoeffdi ...
- 机器学习(4)Hoeffding Inequality--界定概率边界
问题 假设空间的样本复杂度(sample complexity):随着问题规模的增长导致所需训练样本的增长称为sample complexity. 实际情况中,最有可能限制学习器成功的因素是训练数据的 ...
- Andrew Ng机器学习公开课笔记 -- 学习理论
网易公开课,第9,10课 notes,http://cs229.stanford.edu/notes/cs229-notes4.pdf 这章要讨论的问题是,如何去评价和选择学习算法 Bias/va ...
- Basic Mathematics You Should Mastered
Basic Mathematics You Should Mastered 2017-08-17 21:22:40 1. Statistical distance In statistics, ...
- Machine Learning——吴恩达机器学习笔记(酷
[1] ML Introduction a. supervised learning & unsupervised learning 监督学习:从给定的训练数据集中学习出一个函数(模型参数), ...
- 【集成模型】Bootstrap Aggregating(Bagging)
0 - 思想 如下图所示,Bagging(Bootstrap Aggregating)的基本思想是,从训练数据集中有返回的抽象m次形成m个子数据集(bootstrapping),对于每一个子数据集训练 ...
- Stanford CS229 Machine Learning by Andrew Ng
CS229 Machine Learning Stanford Course by Andrew Ng Course material, problem set Matlab code written ...
- Computer Science Theory for the Information Age-2: 高维空间中的正方体和Chernoff Bounds
高维空间中的正方体和Chernoff Bounds 本文将介绍高维空间中正方体的一些性质,以及一个非常常见也是非常有用的概率不等式——Chernoff Bounds. 考虑$d$维单位正方体$C=\{ ...
- 切诺夫界证明(Chernoff bound)
随机推荐
- Write a function that generates one of 3 numbers according to given probabilities
You are given a function rand(a, b) which generates equiprobable random numbers between [a, b] inclu ...
- java JIT AOT
作者:ETIN链接:https://zhuanlan.zhihu.com/p/27393316来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. I guess anyon ...
- 【spring】spring的事务传播性 hibernate/jpa等的事务隔离性
spring的注解 @Trancational加在controller层,调用了service层的方法,service层的方法也加了@Trancational注解,这时候就出现了事务的嵌套,也就出现了 ...
- Android 获取虚拟按键的高度
//获取虚拟按键的高度 public static int getNavigationBarHeight(Context context) { int result = 0; if (hasNavBa ...
- 危急,不要任意让站点记住password自己主动登陆!
为了方便用户登录,差点儿全部的站点都实现了"记住password"."自己主动登陆"这样似乎人性化的功能. 我也非常喜欢这个功能,由于我自己的脑子实在是讨厌记东 ...
- Linux执行命令unable to create new native thread问题
对于系统的Linux的问题 主要是线程数有限制max user processes 参数限制 修改这个参数涉及到修改两个文件 vi /etc/security/limits.conf 增加如下内容: ...
- 转: scala语言的简单入门 (IBM develop)
转: https://www.ibm.com/developerworks/cn/java/j-lo-funinscala2/
- 一个端口划到多个VLAN
不想启路由的情况下,希望将一个端口划到多个VLAN中去,其目的有如下几点: 1.隔离不想让相互访问的端口.(如两个部门) 2.让都需要访问的端口划到所有VLAN.(如共享服务器) 3.不启路由协议.( ...
- PHP树生成迷宫及A*自己主动寻路算法
PHP树生成迷宫及A*自己主动寻路算法 迷宫算法是採用树的深度遍历原理.这样生成的迷宫相当的细,并且死胡同数量相对较少! 随意两点之间都存在唯一的一条通路. 至于A*寻路算法是最大众化的一全自己主动寻 ...
- vue2.X 组件通信($emit $on props)
1.index.html 子组件直接修改父组件的数据 组件通讯: vm.$emit(); vm.$on(); 父组件和子组件: 子组件想要拿到父组件数据: 通过 props 之前,子组件可以更改父组 ...