Chernoff-Hoeffding inequality -- Chernoff bounds, and some applications
https://www.cs.utah.edu/~jeffp/teaching/cs5955/L3-Chern-Hoeff.pdf
【大数据-通过随机过程降维 】
When dealing with modern big data sets, a very common theme is reducing the set through a random process. These generally work by making “many simple estimates” of the full data set, and then judging them as a whole. Perhaps magically, these “many simple estimates” can provide a very accurate and small representation of the large data set. The key tool in showing how many of these simple estimates are needed for a fixed accuracy trade-off is the Chernoff-Hoeffding inequality [2, 6]. This document provides a simple form of this bound, and two examples of its use.
【对全集多次简单评估,对不同次结果进行聚合二得出对全集的评估】
[2] Herman Chernoff. A measure of asymptotic efficiency for tests of hypothesis based on the sum of observations. Annals of Mathematical Statistics, 23:493–509, 1952. [3] Sanjoy Dasgupta and Anupam Gupta. An elmentary proof of a theorem of johnson and lindenstrauss. Random Structures & Algorithms, 22:60–65, 2003. [4] Devdatt P. Dubhashi and Alessandro Panconesi. Concentration of Measure for the Analysis of Randomized Algorithms. Cambridge, 2009. [5] P. Frankl and H. Maehara. The Johnson-Lindenstrauss lemma and the spericity of some graphs. Journal of Combinatorial Theory, Series A, (355–362), 1987. [6] Wassily Hoeffding. Probability inequalities for the sum of bounded random variables. Journal of the American Statisitcal Association, 58:13–30, 1963.
http://math.mit.edu/~goemans/18310S15/chernoff-notes.pdf
Can Markov’s and Chebyshev’s Inequality be improved for this particular kind of random variable?
Chernoff-Hoeffding inequality -- Chernoff bounds, and some applications的更多相关文章
- Hoeffding inequality
Hoeffding公式为 \epsilon]\leq{2e^{-2\epsilon^2N}}"> 如果把Training error和Test error分别看成和的话,Hoeffdi ...
- 机器学习(4)Hoeffding Inequality--界定概率边界
问题 假设空间的样本复杂度(sample complexity):随着问题规模的增长导致所需训练样本的增长称为sample complexity. 实际情况中,最有可能限制学习器成功的因素是训练数据的 ...
- Andrew Ng机器学习公开课笔记 -- 学习理论
网易公开课,第9,10课 notes,http://cs229.stanford.edu/notes/cs229-notes4.pdf 这章要讨论的问题是,如何去评价和选择学习算法 Bias/va ...
- Basic Mathematics You Should Mastered
Basic Mathematics You Should Mastered 2017-08-17 21:22:40 1. Statistical distance In statistics, ...
- Machine Learning——吴恩达机器学习笔记(酷
[1] ML Introduction a. supervised learning & unsupervised learning 监督学习:从给定的训练数据集中学习出一个函数(模型参数), ...
- 【集成模型】Bootstrap Aggregating(Bagging)
0 - 思想 如下图所示,Bagging(Bootstrap Aggregating)的基本思想是,从训练数据集中有返回的抽象m次形成m个子数据集(bootstrapping),对于每一个子数据集训练 ...
- Stanford CS229 Machine Learning by Andrew Ng
CS229 Machine Learning Stanford Course by Andrew Ng Course material, problem set Matlab code written ...
- Computer Science Theory for the Information Age-2: 高维空间中的正方体和Chernoff Bounds
高维空间中的正方体和Chernoff Bounds 本文将介绍高维空间中正方体的一些性质,以及一个非常常见也是非常有用的概率不等式——Chernoff Bounds. 考虑$d$维单位正方体$C=\{ ...
- 切诺夫界证明(Chernoff bound)
随机推荐
- 维生素d
作者:卓正内科李爽 链接:https://www.guokr.com/article/440438/来源:果壳本文版权属于果壳网(guokr.com),禁止转载.如有需要,请联系sns@guokr.c ...
- luogu P2434 [SDOI2005]区间
题目描述 现给定n个闭区间[ai, bi],1<=i<=n.这些区间的并可以表示为一些不相交的闭区间的并.你的任务就是在这些表示方式中找出包含最少区间的方案.你的输出应该按照区间的升序排列 ...
- the Red Sun
题面 Description 给定一张 N 个点的图, 点的标号为 1 到 n . 我们进行 M 次连边, 每次连边可以描述为 a b c d w : for i = a to b do for j ...
- IOS7开发~NSAttributedString
从 NSBundle 中读取rtf文本文件的内容,然后用UITextView展示: NSURL *url = [[NSBundle mainBundle] URLForResource:@" ...
- PowerDesigner16 安装包及破解文件
一.准备工作 PowerDesigner16 安装包:http://pan.baidu.com/s/11Qv9H 或http://cloud.suning.com/cloud-web/share/li ...
- Windows下批处理命令启动项目bat脚本
文件env.cfg #server name SERVER_NAME=ActivitiService #JDK Home JDK_HOME= #Main MAIN_CLASS=com.nbtv.com ...
- java wait(),notify(),notifyAll()的理解
这个三个函数来自Object类,众所周知它们是用于多线程同步的.然而,有个问题却一直没搞清楚,即notify()函数到底通知谁?<Thinking in JAVA>中有这么一句话,当not ...
- java命令行
Launches a Java application. Synopsis java [options] classname [args] java [options] -jar filename [ ...
- C语言八进制和十六进制数
一 赋值 int dex = 100;// 默认十进制 int oct = 0144;// 八进制,以0開始 int hex = 0x64;// 十六进制,以0x開始 二 输出 void show(i ...
- 在VS2010中如何添加MSCOMM控件,实现串口通讯
参考文章:http://wenku.baidu.com/link?url=MLGQojaxyHnEgngEAXG8oPnISuM9SVaDzNTvg0oTSrrJkMXIR_6MR3cO_Vnh- ...