【模板】P3806 【模板】点分治1

很好的一道模板题,很无脑经典。

讲讲淀粉质吧,很营养,实际上,点分治是树上的分治算法。根据树的特性,树上两点的路径只有一下两种情况:

  • 路径经过根\((*)\)
  • 路径不经过根\((**)\)

显然对于\((**)\)我们可以通过指定一个新的根使得\((**)\)变成一个子问题。

那么我们在处理的时候,分两种情况:

  • 处理自己各个子树之间的路径\((-)\)
  • 各个子树之内的路径\((--)\)

显然\((--)\)的问题可以通过递归\((**)\)的子问题解决

那么有什么用呢?

考虑时间复杂度,我们指定新根时,若制定它的各自子树的重心,那么最多会递归\(logn​\)次。这是淀粉质的营养时间基数。

那么,我们只需要设计在子树间进行统计答案的复杂度为\(O(x)​\)的算法,那么我们就可以做到\(O(xlogn)​\)的解决了。

这道模板题是问我们是否存在路径长度为\(k\)的路径,我们直接开桶把一个点到指定的\(rt\)的距离存下来,之后直接查询即可,这样的时间复杂度是\(O(n)\)。

总时间复杂度\(O(nlogn)\)

代码如下

#include<bits/stdc++.h>

using namespace std;
#define RP(t,a,b) for(register int t=(a),edd=(b);t<=edd;++t)
#define DRP(t,a,b) for(register int t=(a),edd=(b);t>=edd;--t)
#define ERP(t,a) for(register int t=head[a];t;t=e[t].nx)
#define Max(a,b) ((a)<(b)?(b):(a))
#define Min(a,b) ((a)<(b)?(a):(b))
#define midd register int mid=(l+r)>>1
#define TMP template < class ccf > TMP inline ccf qr(ccf b){
char c=getchar();
int q=1;
ccf x=0;
while(c<48||c>57)
q=c==45?-1:q,c=getchar();
while(c>=48&&c<=57)
x=x*10+c-48,c=getchar();
return q==-1?-x:x;
}
const int maxn=1e4+15;
int n,m;
struct E{
int to,w,nx;
}e[maxn<<1];
int head[maxn];
int cnt;
inline void add(int fr,int to,int w,bool f){
e[++cnt]=(E){to,w,head[fr]};
head[fr]=cnt;
if(f)
add(to,fr,w,0);
}
bool usd[maxn];
int siz[maxn];
int spa[maxn];
int sav[maxn];
int d[maxn];
int rt;
int k[105];
bool ans[10000005];
bool tell[105];
int q[maxn];
int sum; void dfsroot(int now,int last){
siz[now]=1;
spa[now]=0;
ERP(t,now){
if(e[t].to!=last&&!usd[e[t].to]){
dfsroot(e[t].to,now);
siz[now]+=siz[e[t].to];
spa[now]=Max(spa[now],siz[e[t].to]);
}
}
spa[now]=Max(spa[now],sum-siz[now]);
if(spa[now]<spa[rt]||rt==0)
rt=now;
} void dfsdis(int now,int last,int ew){
d[now]=d[last]+ew;
sav[++sav[0]]=d[now];
ERP(t,now){
if(e[t].to!=last&&!usd[e[t].to]){
dfsdis(e[t].to,now,e[t].w);
}
}
} inline void calc(int now){
register int p=0;
ERP(t,now){
if(!usd[e[t].to]){
sav[0]=0;d[now]=0;
dfsdis(e[t].to,now,e[t].w);
RP(j,1,m){
if(!tell[j]){
RP(i,1,sav[0]){
if(k[j]>=sav[i]){
if(ans[k[j]-sav[i]])
tell[j]=1;
}
}
}
}
RP(i,1,sav[0])
ans[sav[i]]=1;
RP(i,1,sav[0])
q[++p]=sav[i];
}
} RP(t,1,p)
ans[q[t]]=0;
} void solve(int now){
usd[now]=ans[0]=1;
calc(now);
ERP(t,now){
if(!usd[e[t].to]){
sum=siz[e[t].to];
rt=0;
dfsroot(e[t].to,0);
solve(rt);
}
}
} int main(){
#ifndef ONLINE_JUDGE
freopen("in.in","r",stdin);
freopen("out.out","w",stdout);
#endif n=qr(1);
m=qr(1);
for(register int t=1,t1,t2,t3;t<n;++t){
t1=qr(1);
t2=qr(1);
t3=qr(1);
add(t1,t2,t3,1);
}
RP(t,1,m)
k[t]=qr(1),tell[t]=!k?1:0;
sum=n;
dfsroot(1,0);
solve(rt); RP(t,1,m)
if(tell[t])
puts("AYE");
else
puts("NAY");
return 0; }

【模板】P3806点分治1的更多相关文章

  1. [luogu P3806] 【模板】点分治1

    [luogu P3806] [模板]点分治1 题目背景 感谢hzwer的点分治互测. 题目描述 给定一棵有n个点的树 询问树上距离为k的点对是否存在. 输入输出格式 输入格式: n,m 接下来n-1条 ...

  2. 洛谷 P3806 【模板】点分治1

    P3806 [模板]点分治1 题目背景 感谢hzwer的点分治互测. 题目描述 给定一棵有n个点的树 询问树上距离为k的点对是否存在. 输入输出格式 输入格式: n,m 接下来n-1条边a,b,c描述 ...

  3. 洛谷 P3806 【模板】点分治1-树分治(点分治,容斥版) 模板题-树上距离为k的点对是否存在

    P3806 [模板]点分治1 题目背景 感谢hzwer的点分治互测. 题目描述 给定一棵有n个点的树 询问树上距离为k的点对是否存在. 输入格式 n,m 接下来n-1条边a,b,c描述a到b有一条长度 ...

  4. P3806 【模板】点分治1(题解)(点分治)

    P3806 [模板]点分治1(题解)(点分治) 洛谷题目传送门 #include<iostream> #include<cstdlib> #include<cstdio& ...

  5. AC日记——【模板】点分治(聪聪可可) 洛谷 P2634

    [模板]点分治(聪聪可可) 思路: 点分治: (感谢灯神) 代码: #include <bits/stdc++.h> using namespace std; #define maxn 2 ...

  6. luogu 3806 【模板】点分治

    luogu 3806 [模板]点分治 给定一棵有n个点的树,有m个询问,每个询问树上距离为k的点对是否存在.树的权值最多不超过c.n<=10000,m<=100,c<=1000,K& ...

  7. 【刷题】洛谷 P3806【模板】点分治1

    题目背景 感谢hzwer的点分治互测. 题目描述 给定一棵有n个点的树 询问树上距离为k的点对是否存在. 输入输出格式 输入格式: n,m 接下来n-1条边a,b,c描述a到b有一条长度为c的路径 接 ...

  8. Luogu P3806 点分治模板1

    题意: 给定一棵有n个点的树询问树上距离为k的点对是否存在. 分析: 这个题的询问和点数都不多(但是显然暴力是不太好过的,即使有人暴力过了) 这题应该怎么用点分治呢.显然,一个模板题,我们直接用套路, ...

  9. 洛谷 P3806 点分治模板

    题目:https://www.luogu.org/problemnew/show/P3806 就是点分治~ 每次暴力枚举询问即可,复杂度是 nmlogn: 注意 tmp[0]=1 ! 代码如下: #i ...

随机推荐

  1. 基于http的断点续传和多线程下载

    HTTP协议的GET方法,支持只请求某个资源的某一部分: 206 Partial Content 部分内容响应: Range 请求的资源范围: Content-Range 响应的资源范围: 断点续传: ...

  2. iptables 一些有用的规则

      -A INPUT -i lo -j ACCEPT #允许本机内部访问,即回环 -A INPUT -m state --state RELATED,ESTABLISHED -j ACCEPT #允许 ...

  3. ORACLE普通表转换成分区表

    转http://mp.weixin.qq.com/s?__biz=MzAwMjkyMjEwNg==&mid=2247484761&idx=1&sn=ce080581145931 ...

  4. JavaScript 深克隆

    深克隆 function judgeType(arg){//判断js数据类型 return Object.prototype.toString.call(arg).slice(8,-1); } fun ...

  5. mysql 升序 字段值为NULL 排在后面

    select * from yryz_products_t order by isnull(sort),sort;

  6. Node.js自动化技术实现(Java)

    Node.js自动化测试框架(NodeTestFramework):

  7. VC6 在使用VC助手(Visual AssistX)在Win7下不能使用↑↓←→及回车键选择的解决的方法

    VC6使用Visual AssistX版本号的问题,换一个版本号.如"Visual Assist X 10.8.2029"就可以解决. http://pan.baidu.com/w ...

  8. HDU 4355 Party All the Time(三分|二分)

    题意:n个人,都要去參加活动,每一个人都有所在位置xi和Wi,每一个人没走S km,就会产生S^3*Wi的"不舒适度",求在何位置举办活动才干使全部人的"不舒适度&quo ...

  9. GridView 获取列字段的几种途径

    GridView是ASP.NET中功能强大的数据显示控件,它的RowDataBound事件为我们提供了方便的控制行.列数据的途径. 要获取当前行的某个数据列,我在实践中总结有如下几种方法: 1. Ce ...

  10. 导出数据生成Excel(MVC)

    /// <summary> /// 生成Excel /// </summary> /// <returns></returns> public File ...