【模板】P3806点分治1
【模板】P3806 【模板】点分治1
很好的一道模板题,很无脑经典。
讲讲淀粉质吧,很营养,实际上,点分治是树上的分治算法。根据树的特性,树上两点的路径只有一下两种情况:
- 路径经过根\((*)\)
- 路径不经过根\((**)\)
显然对于\((**)\)我们可以通过指定一个新的根使得\((**)\)变成一个子问题。
那么我们在处理的时候,分两种情况:
- 处理自己各个子树之间的路径\((-)\)
- 各个子树之内的路径\((--)\)
显然\((--)\)的问题可以通过递归\((**)\)的子问题解决
那么有什么用呢?
考虑时间复杂度,我们指定新根时,若制定它的各自子树的重心,那么最多会递归\(logn\)次。这是淀粉质的营养时间基数。
那么,我们只需要设计在子树间进行统计答案的复杂度为\(O(x)\)的算法,那么我们就可以做到\(O(xlogn)\)的解决了。
这道模板题是问我们是否存在路径长度为\(k\)的路径,我们直接开桶把一个点到指定的\(rt\)的距离存下来,之后直接查询即可,这样的时间复杂度是\(O(n)\)。
总时间复杂度\(O(nlogn)\)
代码如下
#include<bits/stdc++.h>
using namespace std;
#define RP(t,a,b) for(register int t=(a),edd=(b);t<=edd;++t)
#define DRP(t,a,b) for(register int t=(a),edd=(b);t>=edd;--t)
#define ERP(t,a) for(register int t=head[a];t;t=e[t].nx)
#define Max(a,b) ((a)<(b)?(b):(a))
#define Min(a,b) ((a)<(b)?(a):(b))
#define midd register int mid=(l+r)>>1
#define TMP template < class ccf >
TMP inline ccf qr(ccf b){
char c=getchar();
int q=1;
ccf x=0;
while(c<48||c>57)
q=c==45?-1:q,c=getchar();
while(c>=48&&c<=57)
x=x*10+c-48,c=getchar();
return q==-1?-x:x;
}
const int maxn=1e4+15;
int n,m;
struct E{
int to,w,nx;
}e[maxn<<1];
int head[maxn];
int cnt;
inline void add(int fr,int to,int w,bool f){
e[++cnt]=(E){to,w,head[fr]};
head[fr]=cnt;
if(f)
add(to,fr,w,0);
}
bool usd[maxn];
int siz[maxn];
int spa[maxn];
int sav[maxn];
int d[maxn];
int rt;
int k[105];
bool ans[10000005];
bool tell[105];
int q[maxn];
int sum;
void dfsroot(int now,int last){
siz[now]=1;
spa[now]=0;
ERP(t,now){
if(e[t].to!=last&&!usd[e[t].to]){
dfsroot(e[t].to,now);
siz[now]+=siz[e[t].to];
spa[now]=Max(spa[now],siz[e[t].to]);
}
}
spa[now]=Max(spa[now],sum-siz[now]);
if(spa[now]<spa[rt]||rt==0)
rt=now;
}
void dfsdis(int now,int last,int ew){
d[now]=d[last]+ew;
sav[++sav[0]]=d[now];
ERP(t,now){
if(e[t].to!=last&&!usd[e[t].to]){
dfsdis(e[t].to,now,e[t].w);
}
}
}
inline void calc(int now){
register int p=0;
ERP(t,now){
if(!usd[e[t].to]){
sav[0]=0;d[now]=0;
dfsdis(e[t].to,now,e[t].w);
RP(j,1,m){
if(!tell[j]){
RP(i,1,sav[0]){
if(k[j]>=sav[i]){
if(ans[k[j]-sav[i]])
tell[j]=1;
}
}
}
}
RP(i,1,sav[0])
ans[sav[i]]=1;
RP(i,1,sav[0])
q[++p]=sav[i];
}
}
RP(t,1,p)
ans[q[t]]=0;
}
void solve(int now){
usd[now]=ans[0]=1;
calc(now);
ERP(t,now){
if(!usd[e[t].to]){
sum=siz[e[t].to];
rt=0;
dfsroot(e[t].to,0);
solve(rt);
}
}
}
int main(){
#ifndef ONLINE_JUDGE
freopen("in.in","r",stdin);
freopen("out.out","w",stdout);
#endif
n=qr(1);
m=qr(1);
for(register int t=1,t1,t2,t3;t<n;++t){
t1=qr(1);
t2=qr(1);
t3=qr(1);
add(t1,t2,t3,1);
}
RP(t,1,m)
k[t]=qr(1),tell[t]=!k?1:0;
sum=n;
dfsroot(1,0);
solve(rt);
RP(t,1,m)
if(tell[t])
puts("AYE");
else
puts("NAY");
return 0;
}
【模板】P3806点分治1的更多相关文章
- [luogu P3806] 【模板】点分治1
[luogu P3806] [模板]点分治1 题目背景 感谢hzwer的点分治互测. 题目描述 给定一棵有n个点的树 询问树上距离为k的点对是否存在. 输入输出格式 输入格式: n,m 接下来n-1条 ...
- 洛谷 P3806 【模板】点分治1
P3806 [模板]点分治1 题目背景 感谢hzwer的点分治互测. 题目描述 给定一棵有n个点的树 询问树上距离为k的点对是否存在. 输入输出格式 输入格式: n,m 接下来n-1条边a,b,c描述 ...
- 洛谷 P3806 【模板】点分治1-树分治(点分治,容斥版) 模板题-树上距离为k的点对是否存在
P3806 [模板]点分治1 题目背景 感谢hzwer的点分治互测. 题目描述 给定一棵有n个点的树 询问树上距离为k的点对是否存在. 输入格式 n,m 接下来n-1条边a,b,c描述a到b有一条长度 ...
- P3806 【模板】点分治1(题解)(点分治)
P3806 [模板]点分治1(题解)(点分治) 洛谷题目传送门 #include<iostream> #include<cstdlib> #include<cstdio& ...
- AC日记——【模板】点分治(聪聪可可) 洛谷 P2634
[模板]点分治(聪聪可可) 思路: 点分治: (感谢灯神) 代码: #include <bits/stdc++.h> using namespace std; #define maxn 2 ...
- luogu 3806 【模板】点分治
luogu 3806 [模板]点分治 给定一棵有n个点的树,有m个询问,每个询问树上距离为k的点对是否存在.树的权值最多不超过c.n<=10000,m<=100,c<=1000,K& ...
- 【刷题】洛谷 P3806【模板】点分治1
题目背景 感谢hzwer的点分治互测. 题目描述 给定一棵有n个点的树 询问树上距离为k的点对是否存在. 输入输出格式 输入格式: n,m 接下来n-1条边a,b,c描述a到b有一条长度为c的路径 接 ...
- Luogu P3806 点分治模板1
题意: 给定一棵有n个点的树询问树上距离为k的点对是否存在. 分析: 这个题的询问和点数都不多(但是显然暴力是不太好过的,即使有人暴力过了) 这题应该怎么用点分治呢.显然,一个模板题,我们直接用套路, ...
- 洛谷 P3806 点分治模板
题目:https://www.luogu.org/problemnew/show/P3806 就是点分治~ 每次暴力枚举询问即可,复杂度是 nmlogn: 注意 tmp[0]=1 ! 代码如下: #i ...
随机推荐
- pt-online-schema-change原理解析(转)
pt-online-schema-change原理解析 博客相关需要阅读 - zengkefu - 博客园 .pt-online-schema-change工具的使用限制: ).如果修改表有外键,除非 ...
- Objective-C的self.用法的一些总结
最近有人问我关于什么时候用self.赋值的问题, 我总结了一下, 发出来给大家参考. 有什么问题请大家斧正. 关于什么时间用self. , 其实是和Obj-c的存取方法有关, 不过网上很多人也都这么解 ...
- 140. Word Break II(hard)
欢迎fork and star:Nowcoder-Repository-github 140. Word Break II 题目: Given a non-empty string s and a d ...
- docker selinux-enabled作用
一.现象 在docker中有一个运行选项是selinux-enabled.这个选项的作用是啥? 简而言之,它提供了对docker容器中进程的selinux的控制支持.下面举例说明. 首先按照官方文档的 ...
- java中String与equals,==详解
首先,String str1="abc",这个str1所指向的是常量池中的一块内存. 如果又有,String str2="abc",那么str1和str2所指向 ...
- 开源 免费 java CMS - FreeCMS2.1 会员我的留言
项目地址:http://www.freeteam.cn/ 我的留言 从左側管理菜单点击我的留言进入.在这里能够查看当前登录会员的全部留言记录. 查看留言 点击留言标题能够查看留言具体内容. 删除留言 ...
- 【Python】创建和使用类
面向对象编程是最有效的软件编写方法之一 创建Dog类 class Dog(): '''一次模拟小狗的简单测试''' def __init__(self,name,age): self.name = n ...
- Hive命令详解
http://blog.itpub.net/22778222/viewspace-1119892/ 官方文档翻译 http://blog.csdn.net/hguisu/article/detail ...
- 指定UIView的某几个角为圆角
如果需要将UIView的四个角全部设置为圆角,做法相当简单,只需要设置其layer的cornerRadius属性即可.而若要指定某几个角(小于4)为圆角,而别的角不变的时候,这种方法就不好用了.这种情 ...
- VueJS组件之间通过props交互及验证
props 是父组件用来传递数据的一个自定义属性.父组件的数据需要通过 props 把数据传给子组件,子组件需要显式地用 props 选项声明 "prop". 父组件通过props ...