How many ways??

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 954    Accepted Submission(s): 314

Problem Description
春天到了, HDU校园里开满了花, 姹紫嫣红, 非常美丽. 葱头是个爱花的人, 看着校花校草竞相开放, 漫步校园, 心情也变得舒畅. 为了多看看这迷人的校园, 葱头决定, 每次上课都走不同的路线去教室, 但是由于时间问题, 每次只能经过k个地方, 比方说, 这次葱头决定经过2个地方, 那他可以先去问鼎广场看看喷泉, 再去教室, 也可以先到体育场跑几圈, 再到教室. 他非常想知道, 从A 点恰好经过k个点到达B点的方案数, 当然这个数有可能非常大, 所以你只要输出它模上1000的余数就可以了. 你能帮帮他么?? 你可决定了葱头一天能看多少校花哦
 
Input
输入数据有多组, 每组的第一行是2个整数 n, m(0 < n <= 20, m <= 100) 表示校园内共有n个点, 为了方便起见, 点从0到n-1编号,接着有m行, 每行有两个整数 s, t (0<=s,t<n) 表示从s点能到t点, 注意图是有向的.接着的一行是两个整数T,表示有T组询问(1<=T<=100),

接下来的T行, 每行有三个整数 A, B, k, 表示问你从A 点到 B点恰好经过k个点的方案数 (k < 20), 可以走重复边。如果不存在这样的走法, 则输出0

当n, m都为0的时候输入结束

 
Output
计算每次询问的方案数, 由于走法很多, 输出其对1000取模的结果
 
Sample Input
4 4
0 1
0 2
1 3
2 3
2
0 3 2
0 3 3
3 6
0 1
1 0
0 2
2 0
1 2
2 1
2
1 2 1
0 1 3
0 0
 
Sample Output
2
0
1
3

为什么是矩阵快速幂请看这里:http://www.matrix67.com/blog/archives/276 (请看里面的经典题目8)

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<string>
#include<queue>
#include<algorithm>
#include<map>
#include<iomanip>
#define INF 99999999
using namespace std; const int MAX=20+10;
const int mod=1000;
int s[MAX][MAX],sum[MAX][MAX],array[MAX][MAX];
int n,m; void MatrixMult(int a[MAX][MAX],int b[MAX][MAX]){
int c[MAX][MAX]={0};
for(int i=0;i<n;++i){
for(int j=0;j<n;++j){
for(int k=0;k<n;++k){
c[i][j]=(c[i][j]+a[i][k]*b[k][j])%mod;
}
}
}
for(int i=0;i<n;++i){
for(int j=0;j<n;++j)a[i][j]=c[i][j];
}
} int Matrix(int a,int b,int k){//矩阵快速幂
for(int i=0;i<n;++i){//初始化矩阵sum,使sum*b=b(b是矩阵)
for(int j=0;j<n;++j){
if(i == j)sum[i][j]=1;
else sum[i][j]=0;
}
}
for(int i=0;i<n;++i){//将最初矩阵s复制给array
for(int j=0;j<n;++j)array[i][j]=s[i][j];
}
while(k){
if(k&1)MatrixMult(sum,array);
MatrixMult(array,array);
k>>=1;
}
return sum[a][b];
} int main(){
int a,b,t,k;
while(cin>>n>>m,n+m){
memset(s,0,sizeof s);
for(int i=0;i<m;++i){
scanf("%d%d",&a,&b);
s[a][b]=1;
}
cin>>t;
while(t--){
scanf("%d%d%d",&a,&b,&k);
printf("%d\n",Matrix(a,b,k));
}
}
return 0;
}

hdu2157之矩阵快速幂的更多相关文章

  1. How many ways?? - hdu2157(矩阵快速幂-模板)

    分析:求Map^k,刚开始没有用快速幂,TLE了   代码如下: =================================================================== ...

  2. How many ways??---hdu2157(矩阵快速幂)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2157   题意:有一个有向图,含有n个节点,m条边,Q个询问,每个询问有 s,t,p,求 s 到 t ...

  3. 矩阵快速幂 HDU 4565 So Easy!(简单?才怪!)

    题目链接 题意: 思路: 直接拿别人的图,自己写太麻烦了~ 然后就可以用矩阵快速幂套模板求递推式啦~ 另外: 这题想不到或者不会矩阵快速幂,根本没法做,还是2013年长沙邀请赛水题,也是2008年Go ...

  4. 51nod 算法马拉松18 B 非010串 矩阵快速幂

    非010串 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 如果一个01字符串满足不存在010这样的子串,那么称它为非010串. 求长度为n的非010串的个数.(对1e9+7取模) ...

  5. 51nod 1113 矩阵快速幂

    题目链接:51nod 1113 矩阵快速幂 模板题,学习下. #include<cstdio> #include<cmath> #include<cstring> ...

  6. 【66测试20161115】【树】【DP_LIS】【SPFA】【同余最短路】【递推】【矩阵快速幂】

    还有3天,今天考试又崩了.状态还没有调整过来... 第一题:小L的二叉树 勤奋又善于思考的小L接触了信息学竞赛,开始的学习十分顺利.但是,小L对数据结构的掌握实在十分渣渣.所以,小L当时卡在了二叉树. ...

  7. HDU5950(矩阵快速幂)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5950 题意:f(n) = f(n-1) + 2*f(n-2) + n^4,f(1) = a , f(2 ...

  8. 51nod 1126 矩阵快速幂 水

    有一个序列是这样定义的:f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7. 给出A,B和N,求f(n)的值. Input 输 ...

  9. hdu2604(递推,矩阵快速幂)

    题目链接:hdu2604 这题重要的递推公式,找到公式就很easy了(这道题和hdu1757(题解)类似,只是这道题需要自己推公式) 可以直接找规律,推出递推公式,也有另一种找递推公式的方法:(PS: ...

随机推荐

  1. chr(i) 返回整数i对应的ASCII字符

    >>> a 122 >>> b 344 >>> c = chr(a) >>> c 'z' 假如整数“i”超过了256将会爆出一个 ...

  2. Android中数据库Sqlite的性能优化

    1.索引简单的说,索引就像书本的目录,目录可以快速找到所在页数,数据库中索引可以帮助快速找到数据,而不用全表扫描,合适的索引可以大大提高数据库查询的效率.(1). 优点大大加快了数据库检索的速度,包括 ...

  3. 互联网科技今年九个兴奋点:O2O深耕细作,可穿戴设备分水岭

    http://new.iheima.com/detail/2014/0204/58374.html i黑马观察到,2014年是O2O的深耕细作年,而线上和线下结合这一互联网化趋势,将会向更多产业扩散, ...

  4. 总结: Struts2 + Spring 的线程安全问题

    1. 首先Struts2 本身是安全的 其原理大概是:Strtus2会获取到用户的http请求,然后负责给每个请求实例化一个Action 对象,但是大家注意,这里的action对象和Struts1里面 ...

  5. 156. Binary Tree Upside Down

    题目: Given a binary tree where all the right nodes are either leaf nodes with a sibling (a left node ...

  6. OpenSSL 与 SSL 数字证书概念贴

    SSL/TLS 介绍见文章 SSL/TLS原理详解(http://seanlook.com/2015/01/07/tls-ssl). 如果你想快速自建CA然后签发数字证书,请移步 基于OpenSSL自 ...

  7. yiic 数据库迁移工具

    数据库的结构也同源代码一样随着我们开发的进行而不断的发生着改变.在开发过程中,一般的我们需要像管理我们的源代码一样记录下数据库结构的整个变化过程,以便代码还原到指定版本后,数据库能同步的还原到指定的版 ...

  8. 监控Nginx负载均衡器脚本

    1.编写脚本 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 vim nginx_pid.sh #!/bin/bash while  : do nginxpid=`ps -C ...

  9. 2016值得关注的语言平台、JS框架

    语言和平台 Python 3.5 在今年发布了,带来了很多新特性 比如 Asyncio,,为你带来了类似 node.js 的事件机制,还有type hints. 鉴于Python 3 终于真正地火起来 ...

  10. http://www.cnblogs.com/eye-like/p/4121219.html

    c# 操作Word总结 在医疗管理系统中为保存患者的体检和治疗记录,方便以后的医生或其他人查看.当把数据保存到数据库中,需要新建很多的字段,而且操作很繁琐,于是想到网页的信息创建到一个word文本中, ...