bzoj 1089 [SCOI2003]严格n元树(DP+高精度)
1089: [SCOI2003]严格n元树
Time Limit: 1 Sec Memory Limit: 162 MB
Submit: 1250 Solved: 621
[Submit][Status][Discuss]
Description
如果一棵树的所有非叶节点都恰好有n个儿子,那么我们称它为严格n元树。如果该树中最底层的节点深度为d(根的深度为0),那么我们称它为一棵深度为d的严格n元树。例如,深度为2的严格2元树有三个,如下图:
给出n, d,编程数出深度为d的n元树数目。
Input
仅包含两个整数n, d( 0 < n < = 32, 0 < = d < = 16)
Output
仅包含一个数,即深度为d的n元树的数目。
Sample Input
2 2
【样例输入2】
2 3
【样例输入3】
3 5
Sample Output
3
【样例输出2】
21
【样例输出2】
58871587162270592645034001
HINT
Source
【思路】
DP+高精度。
设f[i]表示高i的严格n元数的数目,并设S[i]表示f[i]的前缀和。一颗高i的严格n元树有一个根节点以及n个高不超过i-1的子树构成,每个子树方案为S[n-1],则有转移式:
S[i]=(S[i-1]^n)+1
1表示只有一个根的情况。
高精度照着别人的写的,重载运算符,用起来比较方便。
【代码】
#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std; const int maxn = +;
const int rad = ; struct Bign { int N[maxn],len; };
void print(Bign a) {
printf("%d",a.N[a.len-]);
for(int i=a.len-;i>=;i--)
printf("%03d",a.N[i]); //补全位数
putchar('\n');
}
Bign operator *(Bign A,Bign B) {
Bign C;
int lena=A.len,lenb=B.len;
for(int i=;i<lena+lenb;i++) C.N[i]=;
for(int i=;i<lena;i++)
for(int j=;j<lenb;j++)
C.N[i+j] += A.N[i]*B.N[j];
C.len=A.len+B.len;
for(int i=;i<C.len;i++)
if(C.N[i]>=rad) {
if(i==C.len-)
C.len++ , C.N[i+]=C.N[i]/rad;
else C.N[i+]+=C.N[i]/rad;
C.N[i]%=rad;
}
while(C.len && !C.N[C.len-]) C.len--;
return C;
}
Bign operator ^(Bign A,int p) { //快速幂
Bign C;
C.len=; C.N[]=;
while(p) {
if(p&) C=C*A; A=A*A; p>>=;
}
return C;
}
Bign operator +(Bign A,int x) {
A.N[]+=x;
int now=;
while(A.N[now]>=rad) {
A.len=max(A.len,now+);
A.N[now+]+=A.N[now]/rad;
A.N[now]%=rad;
now++;
A.len=max(A.len,now);
}
return A;
}
Bign operator-(Bign A,Bign B) {
for(int i=;i<A.len;i++) {
A.N[i]-=B.N[i];
if(A.N[i]<)
A.N[i]+=rad , A.N[i+]--;
}
while(A.len && !A.N[A.len-]) A.len--;
return A;
} int n,d;
Bign S[]; int main() {
scanf("%d%d",&n,&d);
if(!d) { puts(""); return ; }
S[].len=; S[].N[]=;
for(int i=;i<=d;i++)
S[i]=(S[i-]^n)+;
print(S[d]-S[d-]);
return ;
}
bzoj 1089 [SCOI2003]严格n元树(DP+高精度)的更多相关文章
- BZOJ 1089 SCOI2003 严格n元树 动态规划+高精度
题目大意:定义一棵深度为d的严格n元树为根的深度为0,最深的节点深度为d,且每一个非叶节点都有恰好n个子节点的树 给定n和d,求深度为d的严格n元树一共同拥有多少种 此题的递推部分并不难 首先我们设深 ...
- BZOJ 1089: [SCOI2003]严格n元树
1089: [SCOI2003]严格n元树 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 1591 Solved: 795[Submit][Statu ...
- bzoj 1089: [SCOI2003]严格n元树【dp+高精】
设f[i]为深度为i的n元树数目,s为f的前缀和 s[i]=s[i-1]^n+1,就是增加一个根,然后在下面挂n个子树,每个子树都有s[i-1]种 写个高精就行了,好久没写WA了好几次-- #incl ...
- bzoj 1089 SCOI2003严格n元树 递推
挺好想的,就是一直没调过,我也不知道哪儿的错,对拍也拍了,因为数据范围小,都快手动对拍了也不知道 哪儿错了.... 我们定义w[i]代表深度<=i的严格n元树的个数 那么最后w[d]-w[d-1 ...
- BZOJ1089:[SCOI2003]严格n元树(DP,高精度)
Description 如果一棵树的所有非叶节点都恰好有n个儿子,那么我们称它为严格n元树.如果该树中最底层的节点深度为d (根的深度为0),那么我们称它为一棵深度为d的严格n元树.例如,深度为2的严 ...
- bzoj1089 [SCOI2003]严格n元树(dp+高精)
1089: [SCOI2003]严格n元树 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 1899 Solved: 954[Submit][Statu ...
- 【BZOJ1089】[SCOI2003]严格n元树(高精度,动态规划)
[BZOJ1089][SCOI2003]严格n元树(高精度,动态规划) 题面 BZOJ 洛谷 题解 设\(f[i]\)表示深度为\(i\)的\(n\)元树个数.然后我们每次加入一个根节点,然后枚举它的 ...
- 【BZOJ】1089: [SCOI2003]严格n元树(递推+高精度/fft)
http://www.lydsy.com/JudgeOnline/problem.php?id=1089 题意:求深度为d的n元树数目.(0<n<=32, 0<=d<=16) ...
- 【noi 2.6_9280】&【bzoj 1089】严格n元树(DP+高精度+重载运算符)
题意:定义一棵树的所有非叶节点都恰好有n个儿子为严格n元树.问深度为d的严格n元树数目. 解法:f[i]表示深度为<=i的严格n元树数目.f[i]-f[i-1]表示深度为i的严格n元树数目.f[ ...
随机推荐
- O2O的理解
O2O 就是把线上和线下的优势完美结合,网上优惠价格,线下享受贴身服务!O2O 还可以实现不同商家的联盟 两年前的微博营销,现在没落了,那么微信营销呢,只能说来的太快了.线上来筛选服务和产品,所有的交 ...
- 我的网站终于连续一星期,ip数1000以上了
相信每个程序员都有一个站长梦,我也是如此.说来惭愧,从2015年4月份开始,我投入了50块的域名费用,50块的空间费用,现在才回本. 由于终于从百度联盟的手里赚了一百块,按耐不住的菜鸟之冲动,于是决定 ...
- EntityFramework在root目录web.config中的配置设置
未找到具有固定名称“System.Data.SqlClient”的 ADO.NET 提供程序的实体框架提供程序.请确保在应用程序配置文件的“entityFramework”节中注册了该提供程序.有关详 ...
- C#中区别多态、重载、重写的概念和语法结构
C#中区别多态.重载.重写的概念和语法结构 重写是指重写基类的方法,在基类中的方法必须有修饰符virtual,而在子类的方法中必须指明override. 格式: 基类中: public virtual ...
- SQL SERVER 中PatIndex的用法个人理解
一般用法:PatIndex('%AAA%',‘BBBBBBBB’) 上句的意思是查找AAA在BBBBBBBB中的位置,从1开始计算,如果没有的话则返回0 其中%AAA%的用法和 SQL语句中like的 ...
- iOS 小知识 - #if , #ifdef , #ifndef.
Q : 在项目的 .h 文件中, #ifndef XXX_h #define XXX_h //程序段1 #endif /* XXX_h */ 的作用? A : 如果 XXX.h 不存在,就引入 XX ...
- 安卓学习之ListView和GridView
ListView 和 GridView是安卓中显示信息的两个很基本也最常用的控件.他们的用法很相似,但是他俩也是有区别的. ListView显示的数据会将他的item放在一行显示,而且根据内容给出it ...
- Tomcat设置最佳线程数总结
最佳线程数: 性能压测的情况下,起初随着用户数的增加,QPS会上升,当到了一定的阀值之后,用户数量增加QPS并不会增加,或者增加不明显,同时请求的响应时间却大幅增加.这个阀值我们认为是最佳线程数. 为 ...
- Java 基础(一)
Java不只是一种语言,更是一个完整的平台,有一个庞大的库,其中包含了很多可重用的代码和一个提供诸如安全性.跨操作系统的可移植性以及自动垃圾收集等服务的执行环境. javaSE: 整个java技术的核 ...
- Swift中的dispatch_once 单例模式
以下有三种方法实现单例模式,支持懒初始化和线程安全 全局变量 结构 dispatch_once 全局变量: 这里使用了全局变量而非类变量,是因为不支持类变量 private let _Singleto ...