http://www.lydsy.com/JudgeOnline/problem.php?id=1001

思路:这应该算是经典的最大流求最小割吧。不过题目中n,m<=1000,用最大流会TLE,所以要利用平面图的一些性质。

这里讲一下平面图的对偶图性质。

在平面图中,所有边将图分成了n个平面。我们将平面标号,对于原图中的每条边,在与之相邻的两个平面间连一条边,最后得到的图就是原图的对偶图。

对偶图有如下性质:

1、对偶图的边数与原图相等。

2、对偶图中的每个环对应原图中的割。

于是可以在原图中的s和t间再连一条边,得到对偶图,用spfa求一次最短路就是答案。

具体可以参考http://wenku.baidu.com/link?url=87F10nBWauMdSF-PaKHoG-3fZj0jFE63P6pHSeX6ZiguQqXOQxm41iLWW5IdZCp2MWFQ8JghamfeI68PtLqEv_JSWapGp5z415gNoYb031u

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
#include<queue>
using namespace std;
#define INF 1000000000
struct edge{
int p,to;
edge(int p=,int to=):p(p),to(to){};
};
vector<edge>g[];
queue<int>q;
int i,j,k,n,m,s,t,x,y,d[];
void spfa(){
for(int i=;i<=t;i++)d[i]=INF;
q.push();
while(!q.empty()){
int x=q.front();q.pop();
for(int i=;i<g[x].size();i++){
edge e=g[x][i];
if(d[x]+e.p<d[e.to]){
d[e.to]=d[x]+e.p;
q.push(e.to);
}
}
}
}
int main()
{
scanf("%d%d",&n,&m);
if(n==){
int minn=INF;
for(i=;i<m;i++){
scanf("%d",&x);
minn=min(minn,x);
}
printf("%d\n",minn);
return ;
}else if(m==){
int minn=INF;
for(i=;i<n;i++){
scanf("%d",&x);
minn=min(minn,x);
}
printf("%d\n",minn);
return ;
}
t=(n-)*(m-)*+;
for(i=;i<=n;i++)
for(j=;j<m;j++){
scanf("%d",&k);
x=(i-)*(m-)*+j*;
y=(i-)*(m-)*+j*+;
if(i==)x=;else if(i==n)y=t;
g[x].push_back(edge(k,y));
g[y].push_back(edge(k,x));
}
for(i=;i<n;i++)
for(j=;j<=m;j++){
scanf("%d",&k);
x=(i-)*(m-)*+j*-;
y=x+;
if(j==)x=t;else if(j==m)y=;
g[x].push_back(edge(k,y));
g[y].push_back(edge(k,x));
}
for(i=;i<n;i++)
for(j=;j<m;j++){
scanf("%d",&k);
x=(i-)*(m-)*+j*;
y=x+;
g[x].push_back(edge(k,y));
g[y].push_back(edge(k,x));
}
spfa();
printf("%d\n",d[t]);
return ;
}

bzoj1001--最大流转最短路的更多相关文章

  1. 【bzoj1001】【最短路】【对偶图】【最大流转最小割】狼抓兔子题解

    [BZOJ1001]狼抓兔子 1001: [BeiJing2006]狼抓兔子 Time Limit: 15 Sec  Memory Limit: 162 MBSubmit: 18872  Solved ...

  2. [bzoj1001][BJOI2006]狼抓兔子——最大流转最短路,平面图

    题目描述: 给定一个平面图,求最小割. 题解: 本题是一道经典题. 周冬Orz的论文是很好的研究资料. 这道题点太多,所以直接跑dinic无疑会超时. 我们观察原图,发现原图是一个平面图. 什么是平面 ...

  3. BZOJ1001 狼抓兔子(网络流转最短路:对偶图)

    题意: 给一个如图形式的\(n*m\)的方格,从左上走到右下,给出边权,问分成两块所需的最小代价.\(n,m\leq1000\). 思路: 显然是个最小割,但是\(O(n^2m)\)的复杂度很高,虽然 ...

  4. bzoj1001(对偶图最短路)

    显然是个最大流问题. 边数达到了10^6级别,显然用dinic算法会TLE 对于一个平面图来说,当然用对偶图的最短路来求最小割(最大流) SPFA转移的时候注意判断边界情况 应该要开longlong才 ...

  5. 刷题向》图论》BZOJ1001 平面图最大流、平面图最小割、单源最短路(easy+)

    坦白的说这是一道水题,但是因为是BZOJ上的1001,所以这道题有着特殊的意义. 关于最大流转最短路的博客链接如下:关于最大流转最短路两三事 这道题的图形很规矩,所以建边和建点还是很简单的. 题目如下 ...

  6. PencilWang博客目录

    在这里有一坨目录,以后自己和别人看随笔都会方便很多 一 .刷题相关 1.BZOJ BZOJ1001(最大流,最短路)(EASY+)   BZOJ1002(数学)(NORMAL+)  BZOJ1003( ...

  7. 转自 Good morning 的几句精辟的话

    1.志愿者招募 根据流量平衡方程来构图非常方便,而且简单易懂,以后可能成为做网络流的神法之一 简单记一下流量平衡方程构图法的步骤: a.列出需求不等式 b.通过设置松弛变量,将不等式变成等式 c.两两 ...

  8. BZOJ1001 [BeiJing2006]狼抓兔子 最小割 对偶图 最短路

    原文链接http://www.cnblogs.com/zhouzhendong/p/8686871.html 题目传送门 - BZOJ1001 题意 长成上面那样的网格图求最小割. $n,m\leq ...

  9. BZOJ1001 BJOI2006狼抓兔子(最小割+最短路)

    显然答案就是最小割.直接跑dinic也能过,不过显得不太靠谱. 考虑更正确的做法.作为一个平面图,如果要把他割成两半,那么显然可以用一条曲线覆盖且仅覆盖所有割边.于是我们把空白区域看成点,隔开他们的边 ...

随机推荐

  1. [EasyUI美化换肤]更换EasyUi图标

    前言 本篇文章主要是记录一些换EasyUI皮肤的过程,备忘.也欢迎美工大神各路UI给点好意见,EasyUI我就不介绍了,自行百度吧..(So..所以别问我是不是响应式..本身EasyUI就不是响应式. ...

  2. C# BackgroundWorker 详解

    在C#程序中,经常会有一些耗时较长的CPU密集型运算,如果直接在 UI 线程执行这样的运算就会出现UI不响应的问题.解决这类问题的主要途径是使用多线程,启动一个后台线程,把运算操作放在这个后台线程中完 ...

  3. UVA, 10336 Rank the Languages

    难点在于:递归函数和输出: #include <iostream> #include <vector> #include <algorithm> #include ...

  4. Flexible 弹性盒子模型之CSS flex-basis 属性

    实例 设置第二个弹性盒元素的初始长度为 80 像素: div:nth-of-type(2){flex-basis:80px;}   效果预览 浏览器支持 表格中的数字表示支持该属性的第一个浏览器的版本 ...

  5. Cesium简介以及离线部署运行

    Cesium简介 cesium是国外一个基于JavaScript编写的使用WebGL的地图引擎,一款开源3DGIS的js库.cesium支持3D,2D,2.5D形式的地图展示,可以自行绘制图形,高亮区 ...

  6. 关于SMARTFORMS文本编辑器出错

    最近在做ISH的一个打印功能,SMARTFORM的需求本身很简单,但做起来则一波三折. 使用环境是这样的:Windows 7 64bit + SAP GUI 740 Patch 5 + MS Offi ...

  7. 为什么很多SaaS企业级产品都熬不过第一年

    因工作缘由,笔者与周边数位SaaS企业级应用的创始人.运营负责人有过深入接触,发现一个有趣的现象:刚起步时,蓝图远志.规划清晰,但是一路下来,却异常艰难,有些甚至熬不过第一年,就关门歇业. 2015年 ...

  8. Eclipse出现"Running Android Lint has encountered a problem"解决方案

    安装eclipse for android 时候的错误记录,转载自:http://blog.csdn.net/chenyufeng1991/article/details/47442555 (1)打开 ...

  9. Atitit.软件开发的三层结构isv金字塔模型

    Atitit.软件开发的三层结构isv金字塔模型 第一层,Implements 层,着重与功能的实现.. 第二次,spec层,理论层,设计规范,接口,等.流程.方法论 顶层,val层,价值观层,原则, ...

  10. (整理)MyBatis入门教程(一)

    本文转载: http://www.cnblogs.com/hellokitty1/p/5216025.html#3591383 本人文笔不行,根据上面博客内容引导,自己整理了一些东西 首先给大家推荐几 ...