1. 证明满足 (6) 的范数可以由一个内积诱导出来. 这个结论属于 von Neumann.

证明: 以实线性空间为例, 取内积 $$\bex \sex{x,y}=\cfrac{1}{4}[\sen{x+y}^2-\sen{x-y}^2], \eex$$ 则 $\sex{x,y}$ 为内积, 且 $\sex{x,x}^\frac{1}{2}=\sen{x}$.

2. 证明内积连续地依赖于它的因子, 即若 $x_n\to x$, $y_n\to y$ (这意味着 $\sen{x_n-x}\to 0$, $\sen{y_n-y}\to 0$), 则 $(x_n,y_n)\to (x,y)$.

证明: $$\beex \bea \sev{(x_n,y_n)-(x,y)} &\leq \sev{(x_n,y_n-y)}+\sev{(x_n-x,y)}\\ &\leq \sen{x_n}\cdot \sen{y_n-y} +\sen{x_n-x}\cdot \sen{y}\\ &\leq \max\sed{\max_n \sen{x_n},\sen{y}}\cdot \sez{\sen{y_n-y}+\sen{x_n-x}}. \eea \eeex$$

3. 证明 $\ell^2$ 是完备的内积空间.

证明: $\ell^2$ 的完备性已然在 Page 31 (b) 中说明.

4. 证明引理 5.

证明: (i) 设 $l$ 是线性空间 $X$ 上的非零线性泛函, $$\bex N_l=\sed{x\in X;\ l(x)=0}. \eex$$ 取 $y\in X$ 使得 $l(y)\neq 0$, 则 $$\bee\label{6_4_sum} X=N_l\oplus \span\sed{y}. \eee$$事实上, 显然 $N_l\cap \span\sed{y}=\sed{0}$, $$\bex x=\sez{x-\cfrac{l(x)}{l(y)}y}+\cfrac{l(x)}{l(y)}y\in N_l+\span\sed{y}. \eex$$ 由 \eqref{6_4_sum}, 第 2 章习题 8 即知 $$\bex \codim N_l=1. \eex$$ (ii) 若 $l,m$ 中某一为零泛函, 则显然结论成立, 不然, $$\bex N\equiv N_l=N_m,\quad \codim N=1. \eex$$ 取 $y\in X$ 使得 $l(y)\neq0$, 则 $m(y)\neq 0$, 设 $$\bex l(y)=c_1\cdot m(y), \eex$$ 则 $$\beex \bea l(n+ky)&=k\cdot l(y)\quad\sex{\forall\ n\in N,\ \forall\ k}\\ &=k\cdot c_1\cdot m(y)\\ &=c_1\cdot m(ky)\\ &=c_1\cdot m(n+ky). \eea \eeex$$ (iii) 设 $N_l\ni x_n\to x$, 则由 $l$ 的连续性, $$\bex l(x_n)=0\ra l(x)=0\ra x\in N_l. \eex$$

5. 证明一个集合的闭线性张是它的线性张的闭包.

证明: 设 $S$ 是一个集合, 一方面, $S$ 的线性张的闭包 $W$ 是闭线性子空间 (Page 30 定理 2); 另一方面, 任一包含 $S$ 的闭线性子空间均包含 $W$. 故有结论.

6. 证明引理 8.

证明: 由 $\dps{\sum|a_j|^2<\infty}$ 知 $\forall\ k$, $\sed{j; |a_j|>1/k}$ 均为有限集, 而 $\sed{j; a_j\neq 0}$ 是可数的. 故 (27) 为可数和 $\dps{x=\vsm{j}a_jx_j}$. 又由 $$\beex \bea \sev{\sum_{j=k}^l a_jx_j}^2&=\sex{\sum_{j=k}^l a_jx_j,\sum_{j=k}^l a_jx_j}\\ &=\sum_{j=k}^l |a_j|^2\\ &\to 0\quad\sex{k\to\infty} \eea \eeex$$ 及 $H$ 完备知 $\dps{\vsm{j}a_jx_j}$ 是收敛的. 据内积的连续性易知 $$\bex \sen{x}^2=\sex{x,x}=\vsm{j}|a_j|^2,\quad a_j=(x,x_j). \eex$$ 记 $$\bex Y=\sed{x=\vsm{j}a_jx_j;\ \vsm{j}|a_j|^2<\infty,\ \sed{x_j}\mbox{ 为任一可数的标准正交子集}}, \eex$$ 则由定理 7 知 $Y$ 为 $\sed{x_j}$ 的闭线性包.

7. 证明定理 $9'$.

证明: 取 $$\bex \ba{ll} z_1=x_1,&y_1=\cfrac{z_1}{\sen{z_1}},\\ z_2=x_2-(x_2,y_1)y_1,&y_2=\cfrac{z_2}{\sen{z_2}},\\ \cdots,&\cdots,\\ z_n=x_n-\sum_{j=1}^{n-1}(x_n,y_j)y_j,&y_n=\cfrac{z_n}{\sen{z_n}} \ea \eex$$ 即可.

8. 设 $H$ 是一个 Hilbert 空间. 证明 $H$ 的任意两个标准正交基的基数相同.

证明: 设 $\sed{x_j}$, $\sed{y_k}$ 为 $H$ 的两个标准正交基, 则 $$\bex x=\sum a_jx_j=\sum b_ky_k, \eex$$ 其中 $$\bex \sum |a_j|^2<\infty,\quad\sum |b_k|^2<\infty,\quad a_j=(x,x_j),\quad b_k=(x,y_k). \eex$$ 特别地, $$\bex y_k=\sum (y_k,x_j)x_j,\quad x_j=\sum (x_j,y_k)y_k. \eex$$ 这样, $$\bex y_k\mapsto \sed{(y_k,x_j)}_j,\quad x_j\mapsto \sed{(x_j,y_k)}_k \eex$$ 定义了 $\sed{y_k}_k$ 到 $\sed{(y_k,x_j)}_{k,j}$, $\sed{x_j}_j$ 到 $\sed{(x_j,y_k)}_{j,k}$ 的双射. 又由 $$\bex \overline{(y_k,x_j)}=(x_j,y_k) \eex$$ 给出了 $\sed{(y_k,x_j)}_{k,j}$ 与 $\sed{(x_j,y_k)}_{j,k}$ 之间的双射. 而存在 $\sed{y_k}_k$ 与 $\sed{x_j}_j$ 之间的双射, 它们的基数是相同的.

9. 证明定理 10.

证明: 设 ${\bf M}: x\to y$. 则 $$\bex \sen{{\bf M} x}^2=\sen{y}^2=\sum |a_j|^2=\sen{x}^2. \eex$$ 于是 ${\bf M}$ 为等距. 另外, 设 ${\bf A}:H\to H$ 是等距, $\sed{x_j}$ 为 $H$ 的一个标准正交基, 则由等距的性质, $\sed{{\bf A} x_j}$ 也为 $H$的一个标准正交基.这样, $$\bex {\bf A}:\quad H\ni x=\sum a_jx_j\mapsto {\bf A} x=\sum a_j({\bf A} x_j)\in H. \eex$$ 注意: 按照习题 6 的证明, 上述求和其实是可数求和.

10. 证明, 每个可分的无限维 Hilbert 控股你就按都同构于空间 $\ell^2$, 其中 $\ell^2$ 是由满足 $$\bex \sen{x}^2=\sum |a_j|^2<\infty \eex$$ 的向量 $x=(a_1,a_2,\cdots)$ 构成的线性空间.

证明: 取定 $H$ 的一个标准正交基 $\sed{x_j}_{j=1}^\infty$, 则 $$\bex H\ni \vsm{j}a_jx_j\mapsto \sed{a_j}\in \ell^2 \eex$$ 给出了一个等距同构.

错误指出:

Page 48, 第 4 行, $u$ 前面加上非零两字.

[PeterDLax著泛函分析习题参考解答]第6章 Hilbert 空间的更多相关文章

  1. [PeterDLax著泛函分析习题参考解答]第7章 Hilbert 空间结果的应用

    1. 对测度是 $\sigma$ 有限的情形证明 Radon-Nikodym 定理. 证明: 设 $\mu,\nu$ 均为 $\sigma$ 有限的非负测度, 则存在分割 $$\bex X=\cup_ ...

  2. [PeterDLax著泛函分析习题参考解答]第2章 线性映射

    1. 验证两个线性映射的复合仍是线性映射而且满足分配律: $$\bex {\bf M}({\bf N}+{\bf K})={\bf M}{\bf N}+{\bf M}{\bf K},\quad ({\ ...

  3. [PeterDLax著泛函分析习题参考解答]第1章 线性空间

    1. 证明定理 1. 2. 验证上述结论. 3. 证明定理 3. 4. 证明定理 4. 证明: 由 $$\bex x=\sum_{k=1}^{n-1}a_k\cdot \sum_{j=1}^{n-1} ...

  4. [PeterDLax著泛函分析习题参考解答]第5章 赋范线性空间

    1. (a) 证明 (6) 定义了范数. (b) 证明它们在 (5) 式意义下是等价的. 证明: $$\bex |(z,u)|'\leq |(z,u)|\leq 2|(z,u)|',\quad |(z ...

  5. [PeterDLax著泛函分析习题参考解答]第4章 Hahn-Bananch 定理的应用

    1. 证明: 若在 4.1 节中取 $S=\sed{\mbox{正整数}}$, $Y$ 是收敛数列构成的空间, $\ell$ 由 (14) 式定义, 则由 (4) 给出的 $p$ 和由 (11) 定义 ...

  6. [PeterDLax著泛函分析习题参考解答]第3章 Hahn-Banach 定理

    1. 证明 $(10'$). 证明: $\ra$: 由 $p_K(x)<1$ 知 $$\bex \exists\ 0<a<1,\st \cfrac{x}{a}\in K. \eex$ ...

  7. [物理学与PDEs]第1章习题参考解答

    [物理学与PDEs]第1章习题1 无限长直线的电场强度与电势 [物理学与PDEs]第1章习题2 均匀带电球面的电场强度与电势 [物理学与PDEs]第1章习题3 常场强下电势的定解问题 [物理学与PDE ...

  8. [物理学与PDEs]第2章习题参考解答

    [物理学与PDEs]第2章习题1 无旋时的 Euler 方程 [物理学与PDEs]第2章习题2 质量力有势时的能量方程 [物理学与PDEs]第2章习题3 Laplace 方程的 Neumann 问题 ...

  9. [物理学与PDEs]第3章习题参考解答

    [物理学与PDEs]第3章习题1 只有一个非零分量的磁场 [物理学与PDEs]第3章习题2 仅受重力作用的定常不可压流理想流体沿沿流线的一个守恒量 [物理学与PDEs]第3章习题3电磁场的矢势在 Lo ...

随机推荐

  1. java新手笔记12 单例

    1.单例 package com.yfs.javase; public class Singleton { //private static final Singleton single = new ...

  2. JS Attribute属性操作

    Attribute是属性的意思,文章仅对部分兼容IE和FF的Attribute相关的介绍. attributes:获取一个属性作为对象 getAttribute:获取某一个属性的值setAttribu ...

  3. Spring+Maven+Eclipse构建Web工程

    转载请注明出处:http://www.cnblogs.com/lidabnu/p/5657439.html 1 环境准备 下载Eclipse:http://www.eclipse.org/downlo ...

  4. (hdu)5546 Ancient Go

    Problem Description Yu Zhou likes to play Go with Su Lu. From the historical research, we found that ...

  5. 用source code编译安装Xdebug

    1. Unpack the tarball: tar -xzf xdebug-2.2.x.tgz.  Note that you do not need to unpack the tarball i ...

  6. 《sed的流艺术之一》-linux命令五分钟系列之二十一

    本原创文章属于<Linux大棚>博客,博客地址为http://roclinux.cn.文章作者为rocrocket. 为了防止某些网站的恶性转载,特在每篇文章前加入此信息,还望读者体谅. ...

  7. important的妙用

    !important: 为某些样式设置具有最高权值,高于id选择器 用法: !important要写在分号的前面 例如: <p class="first">!impor ...

  8. MySQL 查询某时间段范围内的数据 补零

    1.创建基础表 CREATE TABLE num (i INT); INSERT INTO num (i) VALUES (0),(1),(2),(3),(4),(5),(6),(7),(8),(9) ...

  9. 【转】关于oracle with as用法

    原文链接:关于oracle with as用法 with as语法–针对一个别名with tmp as (select * from tb_name) –针对多个别名with   tmp as (se ...

  10. substring和substr的用法

    substring 方法用于提取字符串中介于两个指定下标之间的字符 substring(start,end) 开始和结束的位置,从零开始的索引 返回值是一个新的字符串,该字符串值包含 stringOb ...