描述


http://poj.org/problem?id=3616

给奶牛挤奶,共m次可以挤,给出每次开始挤奶的时间st,结束挤奶的时间ed,还有挤奶的量ef,每次挤完奶要休息r时间,问最大挤奶量.

Milking Time
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 7507   Accepted: 3149

Description

Bessie is such a hard-working cow. In fact, she is so focused on maximizing her productivity that she decides to schedule her next N (1 ≤ N ≤ 1,000,000) hours (conveniently labeled 0..N-1) so that she produces as much milk as possible.

Farmer John has a list of M (1 ≤ M ≤ 1,000) possibly overlapping intervals in which he is available for milking. Each interval i has a starting hour (0 ≤ starting_houriN), an ending hour (starting_houri < ending_houriN), and a corresponding efficiency (1 ≤ efficiencyi ≤ 1,000,000) which indicates how many gallons of milk that he can get out of Bessie in that interval. Farmer John starts and stops milking at the beginning of the starting hour and ending hour, respectively. When being milked, Bessie must be milked through an entire interval.

Even Bessie has her limitations, though. After being milked during any interval, she must rest R (1 ≤ RN) hours before she can start milking again. Given Farmer Johns list of intervals, determine the maximum amount of milk that Bessie can produce in the N hours.

Input

* Line 1: Three space-separated integers: N, M, and R
* Lines 2..M+1: Line i+1 describes FJ's ith milking interval withthree space-separated integers: starting_houri , ending_houri , and efficiencyi

Output

* Line 1: The maximum number of gallons of milk that Bessie can product in the N hours

Sample Input

12 4 2
1 2 8
10 12 19
3 6 24
7 10 31

Sample Output

43

Source

分析


对于每一次挤奶,结束时间+=休息时间.

先把m次挤奶按照开始时间排个序,用f[i]表示挤完第i个时间段的奶以后的最大挤奶量,那么有:

f[i]=max(f[i],f[j]+(第i次挤奶.ef)) (1<=j<i&&(第j次挤奶).ed<=(第i次挤奶).st).

注意:

1.答案不是f[m]而是max(f[i]) (1<=i<=m) (因为不一定最后一次挤奶是哪一次).

 #include<cstdio>
#include<algorithm>
using namespace std; const int maxm=;
struct node
{
int st,ed,ef;
bool operator < (const node &a) const
{
return a.st>st;
}
}a[maxm];
int n,m,r;
int f[maxm]; void solve()
{
for(int i=;i<=m;i++)
{
f[i]=a[i].ef;
for(int j=;j<i;j++)
{
if(a[j].ed<=a[i].st)
{
f[i]=max(f[i],f[j]+a[i].ef);
} }
}
int ans=f[];
for(int i=;i<=m;i++) ans=max(ans,f[i]);
printf("%d\n",ans);
} void init()
{
scanf("%d%d%d",&n,&m,&r);
for(int i=;i<=m;i++)
{
scanf("%d%d%d",&a[i].st,&a[i].ed,&a[i].ef);
a[i].ed+=r;
}
sort(a+,a+m+);
} int main()
{
#ifndef ONLINE_JUDGE
freopen("milk.in","r",stdin);
freopen("milk.out","w",stdout);
#endif
init();
solve();
#ifndef ONLINE_JUDGE
fclose(stdin);
fclose(stdout);
#endif
return ;
}

POJ_3616_Milking_Time_(动态规划)的更多相关文章

  1. 增强学习(三)----- MDP的动态规划解法

    上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值.(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的 ...

  2. 简单动态规划-LeetCode198

    题目:House Robber You are a professional robber planning to rob houses along a street. Each house has ...

  3. 动态规划 Dynamic Programming

    March 26, 2013 作者:Hawstein 出处:http://hawstein.com/posts/dp-novice-to-advanced.html 声明:本文采用以下协议进行授权: ...

  4. 动态规划之最长公共子序列(LCS)

    转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...

  5. C#动态规划查找两个字符串最大子串

     //动态规划查找两个字符串最大子串         public static string lcs(string word1, string word2)         {            ...

  6. C#递归、动态规划计算斐波那契数列

    //递归         public static long recurFib(int num)         {             if (num < 2)              ...

  7. 动态规划求最长公共子序列(Longest Common Subsequence, LCS)

    1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...

  8. 【BZOJ1700】[Usaco2007 Jan]Problem Solving 解题 动态规划

    [BZOJ1700][Usaco2007 Jan]Problem Solving 解题 Description 过去的日子里,农夫John的牛没有任何题目. 可是现在他们有题目,有很多的题目. 精确地 ...

  9. POJ 1163 The Triangle(简单动态规划)

    http://poj.org/problem?id=1163 The Triangle Time Limit: 1000MS   Memory Limit: 10000K Total Submissi ...

随机推荐

  1. WPF窗体视图中绑定Resources文件中字符串时,抛出:System.Windows.Markup.StaticExtension

    问题描述: 在Resources.resx定义了一个静态字符串字段Title,并在WPF窗体视图中绑定为窗体的标题: Title="{x:Static local:Resources.Tit ...

  2. jquery杂记之checkbox控制select置灰

    jquery: $(function(){ $("#avg_day_live").bind("click",function(){   //点击 if($(&q ...

  3. oracle 定义临时表

    创建Oracle 临时表,可以有两种类型的临时表: 会话级的临时表 事务级的临时表 . 1) 会话级的临时表因为这这个临时表中的数据和你的当前会话有关系, 当你当前SESSION不退出的情况下,临时表 ...

  4. Windows下Eclipse+PyDev配置Python开发环境

    1.简介 Eclipse是一款基于Java的可扩展开发平台.其官方下载中包括J2EE.Java.C/C++.Android等诸多版本.除此之外,Eclipse还可以通过安装插件的方式进行包括Pytho ...

  5. EOF是什么?

    转自http://www.ruanyifeng.com/blog/2011/11/eof.html 学习C语言的时候,遇到的一个问题就是EOF. 它是end of file的缩写,表示"文字 ...

  6. phpredis

    安装php的redis扩展: http://pecl.php.net/package/redis 也可以用PHP直接连redis: http://www.cnblogs.com/kudosharry/ ...

  7. overflow之锚点技术实现选项卡

    我们知道通过锚点技术可以实现页面内容的定位,如果我们把这些内容放置在一个容器中,看看我们能做什么.       艾玛,选项卡.轮播,有木有,瞬间有种蛋碎的赶脚,以前写个选项卡,破轮播,费了多大的劲儿呀 ...

  8. 【WPF】布局控件总结

    <Canvas>:画布,默认不会自动裁减超出内容,即溢出的内容会显示在Canvas外面,这是因为默认 ClipToBounds="False":可设置ClipToBou ...

  9. WPF DataGrid 自动生成行号的方法(通过修改RowHeaderTemplate的方式)

    WPF中的DataGrid自动生成行号的方法有很多,这里记录了一种通过修改 RowHeaderTemplate的方式来生成行号: 方法一: xaml界面: <Window ... xmlns:l ...

  10. Servlet 的由来和实现过程

           Servlet 是在服务器上运行的小程序.这个词是在 Java applet的环境中创造的,Java applet 是一种当作单独文件跟网页一起发送的小程序,它通常用于在客户端运行,结果 ...