leetCode 53.Maximum Subarray (子数组的最大和) 解题思路方法
Maximum Subarray
Find the contiguous subarray within an array (containing at least one number) which has the largest sum.
For example, given the array [−2,1,−3,4,−1,2,1,−5,4],
the contiguous subarray [4,−1,2,1] has the largest sum = 6.
click to show more practice.
More practice:
If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
思路:这题在刚開始想用双指针解,可是码代码的时候发现双指针不行,感觉不是非常难的一个题。最后还是要求助网上资料。经过翻找,一个非常好的博文详解了本题的算法思想。非常清晰,故摘录在下:
http://blog.csdn.net/joylnwang/article/details/6859677
又一个经典问题。对于一个包括负值的数字串array[1...n],要找到他的一个子串array[i...j](0<=i<=j<=n),使得在array的全部子串中。array[i...j]的和最大。
这里我们须要注意子串和子序列之间的差别。
子串是指数组中连续的若干个元素。而子序列仅仅要求各元素的顺序与其在数组中一致,而没有连续的要求。对于一个元素数为n的数组,其含有2^n个子序列和n(n+1)/2个子串。假设使用穷举法,则至少须要O(n^2)的时间才干得到答案。卡耐基梅隆大学的Jay Kadane的给出了一个线性时间算法,我们就来看看。怎样在线性时间内解决最大子串和问题。
要说明Kadane算法的正确性,须要两个结论。
首先。对于array[1...n],假设array[i...j]就是满足和最大的子串,那么对于不论什么k(i<=k<=j),我们有array[i...k]的和大于0。因为假设存在k使得array[i...k]的和小于0。那么我们就有array[k+1...j]的和大于array[i...j],这与我们假设的array[i...j]就是array中和最大子串矛盾。
其次,我们能够将数组从左到右切割为若干子串,使得除了最后一个子串之外,其余子串的各元素之和小于0,且对于全部子串array[i...j]和随意k(i<=k<j)。有array[i...k]的和大于0。
此时我们要说明的是。满足条件的和最大子串,仅仅能是上述某个子串的前缀。而不可能跨越多个子串。我们假设array[p...q]。是array的和最大子串,且array[p...q]。跨越了array[i...j],array[j+1...k]。依据我们的分组方式,存在i<=m<j使得array[i...m]的和是array[i...j]中的最大值,存在j+1<=n<k使得array[j+1...n]的和是array[j+1...k]的最大值。
因为array[m+1...j]使得array[i...j]的和小于0。此时我们能够比較array[i...m]和array[j+1...n]。假设array[i...m]的和大于array[j+1...n]则array[i...m]>array[p...q]。否array[j+1...n]>array[p...q]。不管谁大,我们都能够找到比array[p...q]和更大的子串。这与我们的假设矛盾。所以满足条件的array[p...q]不可能跨越两个子串。
对于跨越很多其它子串的情况,因为各子串的和均为负值。所以相同能够证明存在和更大的非跨越子串的存在。
对于单元素和最大的特例,该结论也适用。
依据上述结论,我们就得到了Kadane算法的运行流程,从头到尾遍历目标数组,将数组切割为满足上述条件的子串,同一时候得到各子串的最大前缀和,然后比較各子串的最大前缀和,得到终于答案。我们以array={−2, 1, −3, 4, −1, 2, 1, −5, 4}为例,来简单说明一下算法步骤。通过遍历。能够将数组切割为例如以下3个子串(-2)。(1。-3),(4。-1,2,1,-5,4)。这里对于(-2)这种情况。单独分为一组。各子串的最大前缀和为-2,1,6,所以目标串的最大子串和为6。
我的代码,上面博文的代码有些繁琐。
public class Solution {
public int maxSubArray(int[] nums) {
int max = Integer.MIN_VALUE;//设置最小值
int sum = 0;//每一个分组的和
int i = 0;
while(i < nums.length){
sum += nums[i];//每一个分组的前n项和
if(max < sum){
max = sum;//取最大和
}
if(sum < 0){//假设<0。分组结束,開始下一组
sum = 0;
}
i++;
}
return max;
}
}
leetCode 53.Maximum Subarray (子数组的最大和) 解题思路方法的更多相关文章
- [array] leetcode - 53. Maximum Subarray - Easy
leetcode - 53. Maximum Subarray - Easy descrition Find the contiguous subarray within an array (cont ...
- 小旭讲解 LeetCode 53. Maximum Subarray 动态规划 分治策略
原题 Given an integer array nums, find the contiguous subarray (containing at least one number) which ...
- 【剑指Offer】连续子数组的最大和 解题报告(Python)
[剑指Offer]连续子数组的最大和 解题报告(Python) 标签(空格分隔): 剑指Offer 题目地址:https://www.nowcoder.com/ta/coding-interviews ...
- 41. leetcode 53. Maximum Subarray
53. Maximum Subarray Find the contiguous subarray within an array (containing at least one number) w ...
- Leetcode#53.Maximum Subarray(最大子序和)
题目描述 给定一个序列(至少含有 1 个数),从该序列中寻找一个连续的子序列,使得子序列的和最大. 例如,给定序列 [-2,1,-3,4,-1,2,1,-5,4], 连续子序列 [4,-1,2,1] ...
- LN : leetcode 53 Maximum Subarray
lc 53 Maximum Subarray 53 Maximum Subarray Find the contiguous subarray within an array (containing ...
- leetcode 53. Maximum Subarray 、152. Maximum Product Subarray
53. Maximum Subarray 之前的值小于0就不加了.dp[i]表示以i结尾当前的最大和,所以需要用一个变量保存最大值. 动态规划的方法: class Solution { public: ...
- [LeetCode] 53. Maximum Subarray 最大子数组
Given an integer array nums, find the contiguous subarray (containing at least one number) which has ...
- C#解leetcode 53.Maximum Subarray
Find the contiguous subarray within an array (containing at least one number) which has the largest ...
随机推荐
- jquery直接获取html页面元素
大家都会用$('div')来获取div并对其进行一些操作,今天用到一个函数发现$('div')与getElementBy系列函数得到的对象并不一样. 然后去查了下,发现$('div')得到的是一个数组 ...
- slivelight5和数据库交互
最近开始研究sliverlight和数据库交互了,无奈网上资料较少,查阅了大量资料终于成功了,但是我记得还有别的方法,希望大家讨论一下 数据访问层我的用的是ado.net实体数据模型 然后新建了一个w ...
- vs2010 使用SignalR 提高B2C商城用户体验(一)
vs2010 使用SignalR 提高B2C商城用户体验(一) 1.需求简介,做为新时代的b2c商城,没有即时通讯,怎么提供用户粘稠度,怎么增加销量,用户购物的第一习惯就是咨询,即时通讯,应运而生.这 ...
- 【POJ3169 】Layout (认真的做差分约束)
Layout Description Like everyone else, cows like to stand close to their friends when queuing for ...
- 【Xamarin挖墙脚系列:使用Xamarin进行Hybrid应用开发】
原文:[Xamarin挖墙脚系列:使用Xamarin进行Hybrid应用开发] 官方地址:https://developer.xamarin.com/guides/cross-platform/adv ...
- git rebase实战
在develop分支上rebase另外一个分支master,是将master作为本地,develop作为远端来处理的. 最后的效果是,develop分支看起来像是在master分支的最新的节点之后才进 ...
- Eclipse中添加android sdk javadoc和source
在 javadoc location path中添加file:/D:/Android_SDK/sdk/docs/reference/ 在 source attachment中添加为 Externa ...
- MySQL优化器cost计算
记录MySQL 5.5上,优化器进行cost计算的方法. 第一篇: 单表的cost计算 数据结构: 1. table_share: 包含了表的元数据,其中索引部分: key_info:一个key的结构 ...
- BZOJ3210: 花神的浇花集会
3210: 花神的浇花集会 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 238 Solved: 119[Submit][Status] Descri ...
- 【Android 复习】:Android五种布局的使用方法
---恢复内容开始--- 在Android布局中,有五种常用的布局,下面我们就来学习一下这几种布局的使用方式 1) 线性布局:LinearLayout 2) 帧布局: FrameLayout 3) ...