IOT数据库选型——NOSQL,MemSQL,cassandra,Riak或者OpenTSDB,InfluxDB
IoT databases should be as flexible as required by the application. NoSQLdatabases -- especially key-value, document and column family databases -- easily accommodate different data types and structures without the need for predefined, fixed schemas. NoSQL databases are good options when an organization has multiple data types and those data types will likely change over time. In other cases, applications that collect a fixed set of data -- such as data on weather conditions -- may benefit from a relational model. In-memory SQL databases, such as MemSQL, offer this benefit.
Managing a database for IoT applications in-house
For those organizations choosing to manage their own databases, DataStax Cassandra is a highly scalable distributed database that supports a flexible big table schema and fast writes and scales to large volumes of data. Riak IoT is a distributed, highly scalable key-value data store which integrates with Apache Spark, a big data analytics platform that enables stream analytic processing. Cassandra also integrates with Spark as well as other big data analytics platforms, such as Hadoop MapReduce.
OpenTSDB is an open source database capable of running on Hadoop andHBase. The database is made up of command line interfaces and a Time Series Daemon (TSD). TSDs, which are responsible for processing all database requests, run independently of one another. Even though TSDs use HBase to store time-series data, TSD users have little to no contact with HBase itself.
MemSQL is a relational database tuned for real-time data streaming. With MemSQL, streamed data, transactions and historical data can be kept within the same database. The database also has the capacity to work well with geospatial data out of the box, which could be useful for location-based IoT applications. MemSQL supports integration with Hadoop Distributed File System and Apache Spark, as well as other data warehousing solutions.
摘自:http://internetofthingsagenda.techtarget.com/feature/Find-the-IoT-database-that-best-fits-your-enterprises-needs
You’ve heard the hype, the Internet of Things (IoT) is going to connect more people to devices, more devices to the Internet and generate more data than any major IT shift in history. IoT is going to be bigger than the web, mobile and the cloud, right? It’s still too early to tell for sure, but at InfluxData we are helping startups and enterprises everyday bring an interconnected world closer to reality.
What does time-series have to do with IoT? Everything, actually. Sensors and devices used in IoT architectures emit time-series data, and a lot of it.
Why are companies building IoT and sensor data solutions?
Whether it’s pH and humidity readings from an agri-sensor, depth and fluid readings from a geo-sensor or voltage and temperature from a power control sensor, these metrics are forming the basis of intelligent businesses. Common use cases we run across are:
- Agro industries are monitoring and trying to control environmental conditions for optimal plant growth.
- Power and utility companies are building smart solutions to reduce resource wastage for residential and commercial customers.
- Research labs and heavy industries are tracking the resources, usage and health of millions of tiny valves and instruments that go into their massive production plants, factories and manufacturing facilities.
- Smart cars are now powerful computers making runtime decisions based on data collected by 100s of sensors on every vehicle.

Challenges in building IoT and sensor data solutions
The key challenges organizations face while building an IoT solution are:
- Bandwidth – As sensors are generally deployed on-premise and need to communicate over wireless networks, bandwidth constraints prevent sending large packets of data in real-time
- Horsepower – Compute power on sensors are generally limited. Hence analytics software – programs or databases or even processing logic needs to have a tiny footprint.
- Concurrency – In case of industrial IoT, number of sensors could easily range in 100s of 1000s, each transmitting metrics every minute or so. Anticipating backend database’s concurrency limits is crucial in the design of such solutions
- Protocol – As this space is rapidly evolving, there aren’t any definitive standards for communication protocols. MQTT, AMQPP, CoAP etc are being used based on use cases. Hence IoT analytics solutions need to support many communication protocols.
- Scale – Data retention, compression and visualization has it’s own challenges in such a large data footprint solution. Businesses want to plot trends (WoW, MoM, YoY) and aggregation of massive data sets can be very compute heavy.
摘自:https://www.influxdata.com/use-cases/iot-and-sensor-data/
NoSQL Database: The NoSQL database is typically used to address the fast data ingest problem for device data. In some cases, there may be a stream processor—e.g. Storm, Samza, Kinesis, etc.—addressing data filtering and routing and some lightweight processing, such as counts. However, the NoSQL database is typically used because, unlike most SQL databases, which top out at about 5,000 inserts/second, you can get up to 50,000 inserts/second from NoSQL databases. However, NoSQL databases are not designed to handle the analytic processing of the data or joins, which are common requirements for Internet of Things applications. NoSQL effectively provides a real-time data ingest engine for data that is then moved to Hadoop using an extract, transform and load (ETL) process.——NOSQL写入快,但是数据分析,联合查询不方便!
IOT数据库选型——NOSQL,MemSQL,cassandra,Riak或者OpenTSDB,InfluxDB的更多相关文章
- nosql数据库选型
http://blogread.cn/it/article/6654 今天在书店里翻完了一遍<七天七数据库>.这本书简单介绍了postgreSQL,riak,mongodb,HBase,r ...
- 一文读懂非关系型数据库(NoSQL)
为了更好的理解非关系型数据库,我又深入的度娘了下 原文地址:https://baijiahao.baidu.com/po/feed/share?wfr=spider&for=pc&co ...
- 非关系型数据库(NoSql)
最近了解了一点非关系型数据库,刚刚接触,觉得这是一个很好的方向,对于大数据 方面的处理,非关系型数据库能起到至关重要的地位.这里我主要是整理了一些前辈的经验,仅供参考. 关系型数据库的特点 1.关系型 ...
- 关系型数据库 VS NOSQL
转载:https://mp.weixin.qq.com/s/FkoOMY8_vnqSPPTHc2PL1w 行式数据库(关系型数据库) 行式数据库有如下几个缺点: 大数据场景下 I/O 较高,因为数据是 ...
- 非关系型数据库(NOSQL)和关系型数据库(SQL)区别详解
前言: 在我们的日常开发中,关系型数据库和非关系型数据库的使用已经是一个成熟的软件产品开发过程中必不可却的存储数据的工具了.那么用了这么久的关系数据库和非关系型数据库你们都知道他们之间的区别了吗?下面 ...
- 关系型数据库与NOSQL
本文转载自: http://www.cnblogs.com/chay1227/archive/2013/03/17/2964020.html(只作转载, 不代表本站和博主同意文中观点或证实文中信息) ...
- 关系型数据库与NOSQL(转)
出处:http://www.cnblogs.com/chay1227/archive/2013/03/17/2964020.html 关系型数据库把所有的数据都通过行和列的二元表现形式表示出来. 关系 ...
- 关系型数据库和NOSQL数据库对比
详见:http://blog.yemou.net/article/query/info/tytfjhfascvhzxcyt328 关系型数据库,是建立在关系模型基础上的数据库,其借助于集合代数等数学概 ...
- 关系型数据库管理系统(RDBMS)与非关系型数据库(NoSQL)之间的区别
简介 关系型数据库管理系统(RDBMS)是建立在关系模型基础上的数据库,主要代表有:Microsoft SQL Server,Oracle,MySQL(开源). 非关系型数据库(NoSQL),主要代表 ...
随机推荐
- Linux sz rz
借助XShell,使用linux命令 root 账号登陆: su root 1.编译安装 wget http://www.ohse.de/uwe/releases/lrzsz-0.12.20.tar. ...
- Vijos1386 IOI2007 矿工配餐 动态规划
感觉早些年IOI的题都不难啊,也就NOIp难度……现在貌似变难了 状态用dp[n][a1][b1][a2][b2]表示 n表示处理到前n个餐车 第一组矿工得到的最近一种食物用a1表示,a1的上一种食物 ...
- 使用gSoap规避和修改ONVIF标准类型结构的解析
ONVIF/gSoap依赖关系及问题 ONVIF是一组服务规范,标准参考 gSoap是一套基于实现SOAP通信接口的工具链 即是,当我们需要访问ONVIF的Web Service或实现对ONVIF部分 ...
- Linux ./configure && make && make install 编译安装和卸载
正常的编译安装/卸载: 源码的安装一般由3个步骤组成:配置(configure).编译(make).安装(make install). configure文件是一个可执行的脚本文件,它有很多选项, ...
- JQuery 实现鼠标经过图片高亮显示,其余图片变暗
效果图: 当鼠标经过图片时,其余图片变暗,来高亮显示当前图片,主要用的是对比度.当然你也可以先把其他图片默认变暗,鼠标经过时高亮显示,不过,无鼠标经过时整体图片都会是偏暗色调. 效果可以通过 三步实现 ...
- linux自动备份文件和数据库并上传到指定的远程FTP中
直接把以下脚本复制到/root/backup.sh[root@lvtao.net ~]# chmod +x /root/backup.sh[root@lvtao.net ~]# crontab -e0 ...
- CHROME下载地址
Chrome官方独立中文安装包下载地址 一般我们安装Google Chrome浏览器都是访问 http://www.google.com/chrome/?hl=zh-CN 然后下载运行ChromeSe ...
- sys.argv[]用法
#-*- coding: utf-8 -*- """ sys.argv 用来获取命令行参数 sys.argv[0] 表示当前执行文件 "-k".sta ...
- 项目任务管理(TaskMgr)设计篇
为什么使用void FilllXX(TypeA pParm1, TypeB pParm2) 应用场景色:void FillXX的好处是可以不用关心实例情况:如果在方法体中需要一个实例,而方法体只知道基 ...
- UIProgressView
UIProgressView顾名思义用来显示进度的,如音乐,视频的播放进度,和文件的上传下载进度等. 下面以一个简单的实例来介绍UIprogressView的使用. @interface Activi ...