IOT数据库选型——NOSQL,MemSQL,cassandra,Riak或者OpenTSDB,InfluxDB
IoT databases should be as flexible as required by the application. NoSQLdatabases -- especially key-value, document and column family databases -- easily accommodate different data types and structures without the need for predefined, fixed schemas. NoSQL databases are good options when an organization has multiple data types and those data types will likely change over time. In other cases, applications that collect a fixed set of data -- such as data on weather conditions -- may benefit from a relational model. In-memory SQL databases, such as MemSQL, offer this benefit.
Managing a database for IoT applications in-house
For those organizations choosing to manage their own databases, DataStax Cassandra is a highly scalable distributed database that supports a flexible big table schema and fast writes and scales to large volumes of data. Riak IoT is a distributed, highly scalable key-value data store which integrates with Apache Spark, a big data analytics platform that enables stream analytic processing. Cassandra also integrates with Spark as well as other big data analytics platforms, such as Hadoop MapReduce.
OpenTSDB is an open source database capable of running on Hadoop andHBase. The database is made up of command line interfaces and a Time Series Daemon (TSD). TSDs, which are responsible for processing all database requests, run independently of one another. Even though TSDs use HBase to store time-series data, TSD users have little to no contact with HBase itself.
MemSQL is a relational database tuned for real-time data streaming. With MemSQL, streamed data, transactions and historical data can be kept within the same database. The database also has the capacity to work well with geospatial data out of the box, which could be useful for location-based IoT applications. MemSQL supports integration with Hadoop Distributed File System and Apache Spark, as well as other data warehousing solutions.
摘自:http://internetofthingsagenda.techtarget.com/feature/Find-the-IoT-database-that-best-fits-your-enterprises-needs
You’ve heard the hype, the Internet of Things (IoT) is going to connect more people to devices, more devices to the Internet and generate more data than any major IT shift in history. IoT is going to be bigger than the web, mobile and the cloud, right? It’s still too early to tell for sure, but at InfluxData we are helping startups and enterprises everyday bring an interconnected world closer to reality.
What does time-series have to do with IoT? Everything, actually. Sensors and devices used in IoT architectures emit time-series data, and a lot of it.
Why are companies building IoT and sensor data solutions?
Whether it’s pH and humidity readings from an agri-sensor, depth and fluid readings from a geo-sensor or voltage and temperature from a power control sensor, these metrics are forming the basis of intelligent businesses. Common use cases we run across are:
- Agro industries are monitoring and trying to control environmental conditions for optimal plant growth.
- Power and utility companies are building smart solutions to reduce resource wastage for residential and commercial customers.
- Research labs and heavy industries are tracking the resources, usage and health of millions of tiny valves and instruments that go into their massive production plants, factories and manufacturing facilities.
- Smart cars are now powerful computers making runtime decisions based on data collected by 100s of sensors on every vehicle.
Challenges in building IoT and sensor data solutions
The key challenges organizations face while building an IoT solution are:
- Bandwidth – As sensors are generally deployed on-premise and need to communicate over wireless networks, bandwidth constraints prevent sending large packets of data in real-time
- Horsepower – Compute power on sensors are generally limited. Hence analytics software – programs or databases or even processing logic needs to have a tiny footprint.
- Concurrency – In case of industrial IoT, number of sensors could easily range in 100s of 1000s, each transmitting metrics every minute or so. Anticipating backend database’s concurrency limits is crucial in the design of such solutions
- Protocol – As this space is rapidly evolving, there aren’t any definitive standards for communication protocols. MQTT, AMQPP, CoAP etc are being used based on use cases. Hence IoT analytics solutions need to support many communication protocols.
- Scale – Data retention, compression and visualization has it’s own challenges in such a large data footprint solution. Businesses want to plot trends (WoW, MoM, YoY) and aggregation of massive data sets can be very compute heavy.
摘自:https://www.influxdata.com/use-cases/iot-and-sensor-data/
NoSQL Database: The NoSQL database is typically used to address the fast data ingest problem for device data. In some cases, there may be a stream processor—e.g. Storm, Samza, Kinesis, etc.—addressing data filtering and routing and some lightweight processing, such as counts. However, the NoSQL database is typically used because, unlike most SQL databases, which top out at about 5,000 inserts/second, you can get up to 50,000 inserts/second from NoSQL databases. However, NoSQL databases are not designed to handle the analytic processing of the data or joins, which are common requirements for Internet of Things applications. NoSQL effectively provides a real-time data ingest engine for data that is then moved to Hadoop using an extract, transform and load (ETL) process.——NOSQL写入快,但是数据分析,联合查询不方便!
IOT数据库选型——NOSQL,MemSQL,cassandra,Riak或者OpenTSDB,InfluxDB的更多相关文章
- nosql数据库选型
http://blogread.cn/it/article/6654 今天在书店里翻完了一遍<七天七数据库>.这本书简单介绍了postgreSQL,riak,mongodb,HBase,r ...
- 一文读懂非关系型数据库(NoSQL)
为了更好的理解非关系型数据库,我又深入的度娘了下 原文地址:https://baijiahao.baidu.com/po/feed/share?wfr=spider&for=pc&co ...
- 非关系型数据库(NoSql)
最近了解了一点非关系型数据库,刚刚接触,觉得这是一个很好的方向,对于大数据 方面的处理,非关系型数据库能起到至关重要的地位.这里我主要是整理了一些前辈的经验,仅供参考. 关系型数据库的特点 1.关系型 ...
- 关系型数据库 VS NOSQL
转载:https://mp.weixin.qq.com/s/FkoOMY8_vnqSPPTHc2PL1w 行式数据库(关系型数据库) 行式数据库有如下几个缺点: 大数据场景下 I/O 较高,因为数据是 ...
- 非关系型数据库(NOSQL)和关系型数据库(SQL)区别详解
前言: 在我们的日常开发中,关系型数据库和非关系型数据库的使用已经是一个成熟的软件产品开发过程中必不可却的存储数据的工具了.那么用了这么久的关系数据库和非关系型数据库你们都知道他们之间的区别了吗?下面 ...
- 关系型数据库与NOSQL
本文转载自: http://www.cnblogs.com/chay1227/archive/2013/03/17/2964020.html(只作转载, 不代表本站和博主同意文中观点或证实文中信息) ...
- 关系型数据库与NOSQL(转)
出处:http://www.cnblogs.com/chay1227/archive/2013/03/17/2964020.html 关系型数据库把所有的数据都通过行和列的二元表现形式表示出来. 关系 ...
- 关系型数据库和NOSQL数据库对比
详见:http://blog.yemou.net/article/query/info/tytfjhfascvhzxcyt328 关系型数据库,是建立在关系模型基础上的数据库,其借助于集合代数等数学概 ...
- 关系型数据库管理系统(RDBMS)与非关系型数据库(NoSQL)之间的区别
简介 关系型数据库管理系统(RDBMS)是建立在关系模型基础上的数据库,主要代表有:Microsoft SQL Server,Oracle,MySQL(开源). 非关系型数据库(NoSQL),主要代表 ...
随机推荐
- iOS多线程的初步研究(八)-- dispatch队列
GCD编程的核心就是dispatch队列,dispatch block的执行最终都会放进某个队列中去进行,它类似NSOperationQueue但更复杂也更强大,并且可以嵌套使用.所以说,结合bloc ...
- jQuery实现页面元素智能定位
实现过程 Js侦听滚动事件,当页面滚动的距离(页面滚动的高度)超出了对象(要滚动的层)距离页面顶部的高度,即要滚动的层到达了浏览器窗口上边缘时,立即将对象定位属性position值改成fixed(固定 ...
- SGU 191.Exhibition(模拟)
时间限制:0.25s 空间限制:4M 题意: 有两个公司A.B,他们要展览物品,但是A公司的展柜要放B公司的物品,B公司的展柜要放A公司物品.最开始只有一个空柜台,从指定的一个公司开始,轮流进行操作, ...
- JQuery解析HTML、JSON和XML实例详解
1.HTML 有的时候会将一段HTML片段保存在HTML文件中,在另外的主页面直接读取该HTML文件,然后解析里面的HTML代码片段融入到主页面中. fragment.html文件,其内容: 复制代码 ...
- angular post发送请求和GET发送请求,服务器端接收不到信息的问题
参数可能因为编码原因,服务器端无法接收到传递的值, 这时需要用到补丁来解决这个问题 1,下载一个http.patch.js文件,放入YII框架中的js/ng文件架内 2angularjs 创建模型部分 ...
- Android Fragment基础及使用
同一个app内的界面切换 用Fragment比较合适,因为Activity比较重量级 Fragment 轻量级,切换灵活 --------------------------------------- ...
- vsftpd.conf 联机手册
vsftpd.conf - vsftpd 的配置文件 描述vsftpd.conf 可以用于控制 vsftpd, 以实现各种各样的功能. vsftpd 缺省到 /etc/vsftpd.conf 处查找此 ...
- 转:简单介绍 P3P 技术
原文来自于:http://blog.csdn.net/ghj1976/article/details/4889219 以 Internet Explorer 为例,默认情况下,IE的隐私策略如下图所设 ...
- TF-IDF与余弦相似性的应用
类似的算法已经被写成了工具,比如基于Java的Classifier4J库的SimpleSummariser模块.基于C语言的OTS库.以及基于classifier4J的C#实现和python实现.
- wildcard 处理全部文件
Makefile如果想取得文件夹下全部文件 $(wildcard $(PATH)/*.c) 即可