deep learning实践经验总结
近期拿caffe来做图片分类。遇到不少问题,同一时候也吸取不少教训和获得不少经验。
先看样例再总结经验。
这是一个2类分类器。分的是条纹衣服和纯色衣服。
先看几张图片。
条纹衣服:
纯色衣服:
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvbGluZ2VybGFubGFu/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt="">
肉眼也非常easy辨认出来。
训练出来的模型眼下的准确率是0.75。
为了可视化特征抽取。我把某一层的特征图和权重图也画出来了,这层是当中一个全连接层。
条纹衣服的特征图:
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvbGluZ2VybGFubGFu/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt="">
纯色衣服的特征图:
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvbGluZ2VybGFubGFu/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt="">
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvbGluZ2VybGFubGFu/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt="">
看条纹衣服的特征图比較有意思,把“条纹”特征给抽取出来了。
或许这就是神经网络奇妙的地方,在没有人的干扰的情况下,居然能学习出来“条纹”特征。
当中一个channel的权重图:
这个就看不出来什么了。以前有一个数据集,训练的是裙子的模型。当我看到权重图是一个裙子轮廓的图。
好了。说了这么多。总结一下经验吧。
1 数据集要保证质量。以前玩过一字领和polo领的分类,刚開始效果非常差,后来发现有一些“错误”的标签。于是把那些样本给去掉。效果好了非常多。
2 learning rate要调整。
有一次训练了非常久。准确率差点儿不变,于是我降低了lr,发现好了非常多。
3 均值化图片。实践证明,均值化后再训练收敛速度更快。准确率更高。
对于深度学习的困惑:感觉准确率是个大问题啊,事实上这也是全部机器学习算法的通病。
对于别人研究提供的数据集,比方imagenet,cifa10,lenet,效果非常好。
可是自己收集的数据集,效果就不是非常理想了。
也就是说,算法不是万能的,仅仅是对于某些数据集有效。
我们能做的。是什么?
1 对于哪些数据集。深度学习比較适合?
2 对于效果差的数据集。怎样能提高准确率?
以前脑海里闪过一个念头。是由上面提到的权重图想到的。
当时看到权重图是一个裙子轮廓的图,心里就想。
这是神经网络自己主动调整出来的权重图,
假设人为加上干预,是否能实现优化呢?
本文作者:linger
本文链接:http://blog.csdn.net/lingerlanlan/article/details/31773811
deep learning实践经验总结的更多相关文章
- Deep Learning中的Large Batch Training相关理论与实践
背景 [作者:DeepLearningStack,阿里巴巴算法工程师,开源TensorFlow Contributor] 在分布式训练时,提高计算通信占比是提高计算加速比的有效手段,当网络通信优化到一 ...
- 吴恩达《深度学习》-第二门课 (Improving Deep Neural Networks:Hyperparameter tuning, Regularization and Optimization)-第一周:深度学习的实践层面 (Practical aspects of Deep Learning) -课程笔记
第一周:深度学习的实践层面 (Practical aspects of Deep Learning) 1.1 训练,验证,测试集(Train / Dev / Test sets) 创建新应用的过程中, ...
- 吴恩达《深度学习》-课后测验-第二门课 (Improving Deep Neural Networks:Hyperparameter tuning, Regularization and Optimization)-Week 1 - Practical aspects of deep learning(第一周测验 - 深度学习的实践)
Week 1 Quiz - Practical aspects of deep learning(第一周测验 - 深度学习的实践) \1. If you have 10,000,000 example ...
- 【深度学习Deep Learning】资料大全
最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books by Yoshua Bengio, Ian Goodfellow and Aaron C ...
- Deep learning:四十(龙星计划2013深度学习课程小总结)
头脑一热,坐几十个小时的硬座北上去天津大学去听了门4天的深度学习课程,课程预先的计划内容见:http://cs.tju.edu.cn/web/courseIntro.html.上课老师为微软研究院的大 ...
- 机器学习(Machine Learning)&深度学习(Deep Learning)资料【转】
转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一 ...
- 机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)
##机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)---#####注:机器学习资料[篇目一](https://github.co ...
- (3)Deep Learning之神经网络和反向传播算法
往期回顾 在上一篇文章中,我们已经掌握了机器学习的基本套路,对模型.目标函数.优化算法这些概念有了一定程度的理解,而且已经会训练单个的感知器或者线性单元了.在这篇文章中,我们将把这些单独的单元按照一定 ...
- Reading | 《DEEP LEARNING》
目录 一.引言 1.什么是.为什么需要深度学习 2.简单的机器学习算法对数据表示的依赖 3.深度学习的历史趋势 最早的人工神经网络:旨在模拟生物学习的计算模型 神经网络第二次浪潮:联结主义connec ...
随机推荐
- 对ng-repeat的表格内容添加不同样式:ng-style
对ng-repeat的表格内容添加不同样式,html代码: <tr ng-repeat="x in tableData"> <td>{{x.networkN ...
- STL中erase()的陷阱
最近在刷stl源码剖析这本书时,对于vector的erase()函数引起了我的注意 在删除单个元素时是这样定义的: iterator erase(iterator position){ !=end() ...
- 自定义Base 64加密
一.前言 最近做软件需要一个功能,就是对文件进行加密.本来嘛,加密算法一堆一堆的,但是试了几个成熟的加密算法后发现对文件进行加密需要的时间很长,特别是上G的文件,这样客户是接受不了的.最后没办法了,好 ...
- 【软件project】机房收费系统之图形回想
[背景]通过一阶段的学习.自己整理了整理机房收费系统.以下想通过几张图来回顾一下机房的总体流程.此图形仅仅代表鄙人现阶段的理解.本文仅供參考,若有不妥的地方,请积极指正. 1.机房收费系统业务流程图 ...
- [Python] Object spread operator in Python
In JS, we have object spread opreator: const x = { a: '1', b: '2' } const y = { c: '3', d: '4' } con ...
- ADO.net简单增删改查
嘿嘿,又到了总结了的时间,今天我们学习了ADO.net,什么是ADO.NET:ADO.NET就是一组类库,这组类库可以让我们通过程序的方式访问数据库,就像System.IO下的类操作文件一样, Sys ...
- Python 极简教程(十一)字典 dict
字典是以大括号标识,以键值对(key:value)的形式,无序,不可重复,可变的集合类型. 字典具有非常高效的读写效率. >>> d = {} # 创建一个空字典 >>& ...
- opencv cvPreCornerDetect
关于OpenCv中cvPreCornerDetect 运行出错解决方法 http://m.blog.csdn.net/blog/wode0239 由于书本上示例的不全,相信大家在做的时候,肯定是无从下 ...
- 最新GitHub新手使用教程(Linux/Ubuntu Git从安装到使用)——详细图解
说明:该篇博客是博主一字一码编写的,实属不易,请尊重原创,谢谢大家! 一.叙述 1.说明:需要在Windows 安装Git的同学,可以查看该篇博客 https://blog.csdn.net/qq_4 ...
- django-rest-framework框架 第一篇
本课件是为了教学任务自己写的学习django-rest-framework框架. 方便自己授课,也成为学生的复习教程. 本课程学习后:具有REST编程思维:并可以通过django及专业的django- ...